YEAR 5 (2016) ANNUAL MONITORING REPORT HERMAN DAIRY STREAM AND WETLAND RESTORATION SITE

Alexander County, North Carolina DMS Project No. 94642 Full Delivery Contract No. 003271

Catawba River Basin
Cataloging Unit and Targeted Local Watershed
03050101120030

Submitted to:
North Carolina Department of Environmental Quality
Division of Mitigation Services
Raleigh, North Carolina

December 2016

YEAR 5 of 7 (2016) ANNUAL MONITORING REPORT HERMAN DAIRY STREAM AND WETLAND RESTORATION SITE

Alexander County, North Carolina DMS Project No. 94642 Full Delivery Contract No. 003271

Catawba River Basin
Cataloging Unit and Targeted Local Watershed
03050101120030

Prepared By:

Restoration Systems, LLC 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604

and

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603

Submitted to:

NC Department of Environmental Quality Division of Mitigation Services Raleigh, North Carolina

December 2016

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 METHODOLOGY	
2.1 Vegetation Assessment	
2.2 Stream Assessment	
2.3 Wetland Assessment	
2.4 Biotic Community Changes	
3.0 REFERENCES	5
FIGURES	
Figure 1. Site Location.	
Figures 2, 2A-2B. Consolidated Current Conditions Plan View	
Figure E1. Annual Climatic Data vs. 30-year Historic Data	Appendix E
APPENDICES	
APPENDIX A. FIGURES	
Figure 1. The Site Location	
Figures 2, 2A-2B. Consolidated Current Conditions Plan View	
APPENDIX B. GENERAL TABLES	
Table 1. Project Restoration Components	
Table 2. Project Activity and Reporting History	
Table 3. Project Contacts Table	
Table 4. Project Attributes Table	
APPENDIX C. VEGETATION ASSESSMENT DATA	
Table 5. Vegetation Plot Mitigation Success Summary Table	
Table 6. CVS Vegetation Metadata Table	
Table 7. CVS Stem Count Total and Planted by Plot and Species	
Vegetation Plot Photographs	

APPENDIX D. STREAM ASSESSMENT DATA

Stream Station Photos

Table 8a-8d. Visual Assessment Tables

Table 9. Verification of Bankfull Events

Tables 10a-10c. Baseline Stream Data Summary

Tables 11a-11e. Monitoring Data-Dimensional Data Summary

Longitudinal Profile Plots

Cross-section Plots

Substrate Plots

APPENDICES (continued)

APPENDIX E. HYDROLOGY DATA

Table 12. Wetland Hydrology Criteria Attainment 2016 Groundwater Gauge Graphs Figure E1. Annual Climatic Data vs. 30-year Historic Data

APPENDIX F. BENTHIC DATA

2016 Benthic Data Lab Results2016 Habitat Assessment Field Datasheets

1.0 EXECUTIVE SUMMARY

Restoration Systems, LLC has established the Herman Dairy Stream and Wetland Mitigation Site (Site) located approximately 1.5 miles northwest of Taylorsville, in central Alexander County within 14-digit Cataloging Unit and Targeted Local Watershed 03050101120030 of the Catawba River Basin. The Site encompasses approximately 31.12 acres of land previously used for agricultural row crop production and the spray application of sludge from a lagoon associated with a dairy cattle operation. The Site was identified to assist the Department of Mitigation Services (DMS) in meeting its stream and wetland restoration goals. This report (compiled based on DMS *Guidance and Content Requirements for DMS Monitoring Reports* Version 1.2.1 dated 12/1/09) serves as the Year 5 (2016) annual monitoring report.

The primary goals and objectives of this stream and wetland restoration project focused on improving water quality, enhancing flood attenuation, and restoring wildlife habitat and will be accomplished by the following.

- 1. Removing nonpoint sources of pollution associated with agricultural production including a) cessation of broadcasting sludge, fertilizer, pesticides, and other agricultural materials into and adjacent to Site streams/wetlands and b) restoration of a forested riparian buffer adjacent to streams and wetlands to treat surface runoff.
- 2. Reducing sedimentation within onsite and downstream receiving waters through a) reduction of bank erosion, vegetation maintenance, and plowing to Site streams and wetlands and b) restoration of a forested riparian buffer adjacent to Site streams and wetlands.
- 3. Reestablishing stream stability and the capacity to transport watershed flows and sediment loads by restoring stable dimension, pattern, and profile supported by natural in-stream habitat and grade/bank stabilization structures.
- 4. Promoting floodwater attenuation by a) reconnecting bankfull stream flows to the abandoned floodplain, b) restoring secondary, entrenched tributaries thereby reducing floodwater velocities within smaller catchment basins, c) restoring depressional floodplain wetlands to increase the floodwater storage capacity within the Site, and d) revegetating Site floodplains to increase frictional resistance on floodwaters crossing Site floodplains.
- 5. Improving aquatic habitat by enhancing stream bed variability and the use of in-stream structures.
- 6. Providing a terrestrial wildlife corridor and refuge in an area extensively developed for agricultural production.
- 7. Restoring and reestablishing natural community structure, habitat diversity, and functional continuity.
- 8. Enhancing and protecting the Site's full potential of stream and wetland functions and values in perpetuity.

<u>Vegetation Success Criteria</u>: An average density of 320 stems per acre of Characteristic Tree Species must be surviving in the first three monitoring years. Subsequently, 290 Characteristic Tree Species per acre must be surviving in year 4, 260 Characteristic Tree Species per acre in year 5, and 210 Characteristic Tree Species per acre in year 7. No single volunteer species (most notably red maple, loblolly pine, and sweet gum) will comprise more than 20 percent of the total composition at years 3, 5, or 7. If this occurs, remedial procedures/protocols outlined in the contingency plan will be implemented. During years 3, 5, and 7, no single volunteer species, comprising over 20 percent of the total composition, may be more than twice the height of the planted trees. If this occurs, remedial procedures outlined in the contingency plan will be implemented. If, within the first 3 years, any species exhibits greater than 50 percent mortality, the species will either be replanted or an acceptable replacement species will be planted in its place as specified in the contingency plan.

Vegetation Results: Vegetation sampling across the Site was above the required average density with 441

planted stems per acre surviving. In addition, 9 out of 10 individual plots exceeded success criteria, with plot 4 being one stem shy of the required stem density. However, when including natural recruits of sycamore (*Platanus occidentalis*) and elm (*Ulmus* sp.), plot 4 exceeds success criteria. The number of native tree and shrub species observed in plots ranged from three (Plot 3) to seven (Plot 5), with 12 total native planted species observed.

Treatment for invasive species, primarily Chinese privet (*Ligustrum sinense*), was initiated prior to construction and has continued as necessary throughout the life of the project. The treatments are conducted in order to restore species composition of Site existing forested areas to native, natural communities. The primary invasive treatment areas are denoted on Figures 2 and 2A-2B (Appendix A).

Replanting occurred during the winter of 2013/2014 in the southeastern portion of the Site between UT2 and UT3 with 3-gallon containerized trees as follows. Overall, newly planted stems appear vigorous, and stem counts have risen well-above success criteria in this area.

175 Tulip poplar (*Liriodendron tulipifera*) 150 Ironwood (*Carpinus caroliniana*) 175 American elm (*Ulmus americana*) 500 TOTAL

Stream Success Criteria: Success criteria for stream restoration will include 1) successful classification of the reach as a functioning stream system (Rosgen 1996) and 2) channel variables indicative of a stable stream system. The channel profile will be measured on 3000 linear feet of stream and 20 cross-sections on an annual basis in order to track changes in channel geometry, profile, or substrate. These data will be utilized to determine the success in restoring stream channel stability. Specifically, the width-to-depth ratio and bankheight ratios should be indicative of stability with minimal changes in cross-sectional area, channel width, and/or bank erosion along the monitoring reach. In addition, channel abandonment and/or shoot cutoffs must not occur and sinuosity values must remain relatively constant. Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure.

Stream Results: As a whole, monitoring measurements indicate there have been minimal changes in both the longitudinal profile and cross-sections as compared to as-built data. The as-built channel geometry compares favorably with the emulated, stable E/C type stream reach as set forth in the detailed mitigation plan and construction plans. Current monitoring has demonstrated dimension, pattern, and profile were stable over the course of the monitoring period. Pebble counts were performed at six cross sections (3 on UT1, 2 on UT2, and 1 on UT3). These pebble counts provide a representative sample of the site substrate.

Throughout the monitoring period, UT1 has received a significant amount of fine sediment deposition as the result of upstream land uses, which include livestock pastures, dairy operations, and cleared riparian buffers. This fine sediment moves through the Site during high flow storm events; however, the dominant substrate in UT1 now appears to be sand. No additional stream problem areas were noted during Year 5 (2016) monitoring.

Beaver activity has been observed onsite throughout the monitoring period, however no beaver dams or signs of recent beaver activity were observed during Year 5 (2016) monitoring.

Hydrology Success Criteria: According to the *Soil Survey of Alexander County*, the growing season for Alexander County as recorded in Hickory, North Carolina during the period from 1951-1984 is from March 20-November 9 (235 days) (USDA 1995). Year 1 (2012) groundwater gauge installation occurred between March 30 and April 4, 2012; therefore, given the date of groundwater gauge installation and the initiation of

monitoring, Year 1 groundwater monitoring utilized the published growing season dates from the county soil survey for success criteria. However, in future monitoring years, if soil temperatures and/or vegetative growth (bud burst) is documented, project gauge hydrologic success will be determined using those dates to more accurately represent the period of biological activity (see following "Summary of Hydrology Success Criteria by Year" table.

Target hydrological characteristics include saturation or inundation for 8 percent of the monitored period, during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may dictate threshold hydrology success criteria (75 percent of reference). These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed.

Summary of Hydrology Success Criteria by Year

Year	Soil Temperatures/Date Bud Burst Documented	•							
2012 (Year 1)		March 20-November 9 (235 days)	19 days						
2013 (Year 2)	No bud burst during February 13-14, 2013 Site visit	March 20-November 9 (235 days)	19 days						
2014 (Year 3)	No bud burst during February site visit	March 20-November 9 (235 days)	19 Days						
2015 (Year 4)	No bud burst during February site visit	March 20-November 9 (235 days)	19 days						
2016 (Year 5)	No bud burst during February site visit	March 20-November 9 (235 days)	19 days						

<u>Hydrology Results</u>: All ten Site groundwater monitoring gauges and the reference gauge exhibited inundation/saturation within 12 inches of the surface for greater than 8 percent of the growing season. All gauges were well-above success criteria for monitoring Year 5 (2016).

<u>Benthics</u>: Habitat Assessment Field Data Sheet scores for UT 1 increased from a total score of 45 prior to restoration to 84 after five annual monitoring years. Similarly, UT 2 improved from a score of 36 to 84 and UT3 improved from a score of 21 to 92 after five annual monitoring years. No benthic samples were obtained from UT3 because the stream was dry at the time of the site visit. Benthic results and Habitat Assessment Field Data Sheets are included in Appendix F.

<u>In summary</u>: Site vegetation, streams, and wetland hydrology met success criteria for Year 5 (2016) monitoring. Based on achievement of success criteria in Years 1-5 (2012-2016), the project will be presented for IRT close-out. Summary information and data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Document (formerly Mitigation Plan) and in the Mitigation Plan (formerly called the Restoration Plan) documents available on the DMS website. All raw data supporting the tables and figures in the appendices is available from DMS upon request.

2.0 METHODOLOGY

Monitoring of the Site's restoration efforts will be performed until agreed upon success criteria are fulfilled. Monitoring is proposed for the stream channel, riparian vegetation, and hydrology (Figure 2, Appendix A). Stream morphology is proposed to be monitored for a period of five years. Riparian vegetation is proposed to be monitored for a period of seven years. Wetland hydrology is proposed to be monitored for a period of

five years; at which time a request will be made to the IRT to discontinue groundwater hydrology monitoring. The IRT reserves the right to request additional groundwater monitoring if it deems necessary. Monitoring reports of the data collected will be submitted to the IRT no later than December of each monitoring year.

2.1 Vegetation Assessment

After planting was completed, an initial evaluation was performed to verify planting methods were successful and to determine initial species composition and density. Ten sample vegetation plots (10-meter by 10-meter) were installed and measured within the Site as per guidelines established in *CVS-DMS Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008). Plots were measured in August 2016 for Year 5 monitoring. Vegetation plots are permanently monumented with 4-foot metal garden posts at each corner. In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph. Vegetation plot information can be found in Appendix C.

2.2 Stream Assessment

Restored stream reaches are proposed to be monitored for geometric activity for five years. Annual fall monitoring will include development of 20 channel cross-sections on riffles and pools and a water surface profile of the channel. The data will be presented in graphic and tabular format. Data to be presented will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, 5) width-to-depth ratio, 6) water surface slope, and 7) sinuosity. The stream will subsequently be classified according to stream geometry and substrate (Rosgen 1996). Significant changes in channel morphology will be tracked and reported by comparing data in each successive monitoring year. Stream data can be found in Appendix D.

2.3 Wetland Assessment

Ten groundwater monitoring gauges were installed within Site wetland restoration areas and one additional gauge was installed in a reference wetland to monitor groundwater hydrology (Figure 2, Appendix A). Hydrological sampling will continue for five years throughout the growing season at intervals necessary to satisfy the hydrology success criteria within each design unit (USEPA 1990). In addition, an onsite rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions. Finally, groundwater gauges located within riverine wetlands adjacent to restored stream reaches will supplement crest gauge measurements to confirm overbank flooding events. Graphs of groundwater hydrology and precipitation from a nearby rain station are included in Appendix E.

2.4 Biotic Community Changes

Changes in the biotic community are anticipated from a shift in habitat opportunities as tributaries are restored. In-stream, biological monitoring is proposed to track changes during the monitoring period. The benthic macroinvertebrate community will be sampled using North Carolina Division of Water Resources (NCDWR) protocols found in the Standard Operating Procedures for Benthic Macroinvertebrates (NCDWR 2006) and Benthic Macroinvertebrate Protocols for Compensatory Stream Restoration Projects (NCDWR 2001). Biological sampling of benthic macroinvertebrates will be used to compare preconstruction baseline data with post-construction restored conditions.

Benthic macroinvertebrate monitoring locations were established within Site restoration reaches. Post-construction collections occurred in approximately the same locations as pre-construction sampling; however, sampling was not possible in UT 3 in Year 4 (2015) due to lack of stream flow. Benthic macroinvertebrate samples were collected using the Qual-4 collection method. Sampling techniques of the Qual-4 collection method consist of kick nets, sweep nets, leaf packs, and visual searches. Post-construction biological sampling occurred on June 23, 2016 for Year 5 monitoring; post-construction monitoring will occur in June of each monitoring year. Identification of collected organisms was performed by Pennington and Associates, a NCDWR certified laboratory. Results and Habitat Assessment Field Data Sheets are enclosed in Appendix F.

3.0 REFERENCES

- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-DMS Protocol for Recording Vegetation. Version 4.2. Department of Environmental Quality. Division of Mitigation Services. Raleigh, North Carolina.
- North Carolina Division of Water Resources (NCDWR). 2001. Benthic Macroinvertebrate Monitoring Protocols for Compensatory Mitigation. 401/Wetlands Unit, Department of Environmental Quality. Raleigh, North Carolina.
- North Carolina Division of Water Resources (NCDWR). 2011. Standard Operating Procedures for Collection and Analysis of Benthic Macroinvertebrates (Version 3.0). Biological Assessment Unit, Department of Environmental Quality. Raleigh, North Carolina.
- Rosgen, D.L. 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, CO.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environmental Quality. Raleigh, North Carolina.
- United States Department of Agriculture (USDA). 1995. Soil Survey of Alexander County, North Carolina. Natural Resources Conservation Service, United States Department of Agriculture.
- United States Environmental Protection Agency (USEPA). 1990. Mitigation Site Type Classification (MiST). USEPA Workshop, August 13-15, 1989. EPA Region IV and Hardwood Research Cooperative, NCSU, Raleigh, North Carolina.
- Weather Underground. 2014. Station at Hickory Airport, North Carolina. (online). Available: http://www.wunderground.com/history/airport/KHKY/2014/10/31/DailyHistory.html [October 31, 2014]. Weather Underground.

Appendix A. Figures

Figure 1. The Site Location Figures 2, 2A-2B. Consolidated Current Conditions Plan View

Alexander County, North Carolina

	F
Date: May 2012	
Project:	
10-016	

Axiom Environmental Inc.

Axiom Environmental 218 Snow Avenue Raleigh, NC 27603 (919) 215-1693 STREAM AND WETLAND MITIGATION SITE
CONSOLIDATED CURRENT CONDITION PLAN VIEW
Alexander County, North Carolina

Dwn. By:		FIGURE
	KRJ/CLF	FIGURE
Date:		
	Nov. 2016	2R
Project:		
	10-001	

Appendix B. General Project Tables

Table 1. Project Restoration Components
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Attribute Table

Table 1. Project Restoration Components Herman Dairy Restoration Site

			Mitigation	Credits								
Stream			Rip	arian Wetland		Nonriparian Wetland						
Restoration	Restoration Equiva	lent	Restoration	Restoration E	Restoration Restoration Equivale							
4780	0		7.2	1.1		1.2	0.05					
			Projects Cor	nponents								
Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio		Comment					
UT1 10+00-31+67.8* UT1A 10+00-10+85.71 UT2 10+00-16+69.04, 21+50.67-27+10.09 UT3 10+00-17+28.39	4540	I	Restoration	3997	1:1		estoration through construction of the historic floodplain elevation.					
UT2 16+69.04-21+50.67 UT3 upper 81.10 linear feet			Restoration	563	1:1	across riparian wet	oration by redirecting diffuse flow lands. Linear footage of stream is traight line valley distance.					
UT1 upper 330.00 linear feet	330	Level I	Enhancement	330	dimension, cessat removing invasive	nhancement by altering profile and ation of current land use practices, we species, and planting with native forest vegetation.						
Riparian Wetlands	0		Restoration	7.2	1:1	Restoration of riparian wetlands within the floodplain as the result of stream restoration activities, filling abandoned channels and ditches, removing spoil castings, and planting with native forest vegetation.						
Riparian Wetlands	2.2		Enhancement	2.2	2:1	characterized by d	of existing riparian wetlands isturbed pasture by planting with e forest vegetation.					
Nonriparian Wetlands	0		Restoration	1.2	1:1	castings, filling aba soils along the slop	parian wetlands by removing spoil adoned ditches to rehydrate hydric be, eliminating land use practices, with native forest vegetation.					
Nonriparian Wetlands	Nonriparian Wetlands 0.1				2:1	characterized by d	Existing nonriparian wetlands isturbed pasture by planting with e forest vegetation.					
			Component S	ummation								
Restoration Level	Stream (linear foo	otage)	Riparian V	Wetland (acreage)		Nonriparian V	Vetland (acreage)					
Restoration	4560			7.2			1.2					
Enhancement (Level 1)	330											
Enhancement				2.2			0.05					
Totals	4890			9.4		1.25						
Mitigation Units *Restoration linear footage	4780 SMUs	2 2		parian WMUs			parian WMUs					

^{*}Restoration linear footage excludes 145.76 linear feet of stream located within the utility easement and 67.79 linear feet of stream located within a culverted crossing, which are both excluded from the easement.

Table 2. Project Activity and Reporting History Herman Dairy Restoration Site

Activity or Deliverable	Data Collection Complete	Completion or Delivery
	Complete	· · · · · · · · · · · · · · · · · · ·
Technical Proposal (RFP No. 16-002830)		March 2010
DMS Contract No. 003271		July 23, 2010
Restoration Plan		January 2011
Construction Plans		August 2011
Construction Earthwork		March 2012
Invasive Species Treatment		Ongoing
As-Built Documentation		June 2012
Year 1 (2012) Annual Monitoring	September 2012	October 2012
Year 2 (2013) Annual Monitoring	October 2013	November 2013
Replanting		Late 2013/Early 2014
Year 3 (2014) Annual Monitoring	November 2014	January 2015
Year 4 (2015) Annual Monitoring	November 2015	December 2015
Year 5 (2016) Annual Monitoring	November 2016	December 2016

Table 3. Project Contacts Table Herman Dairy Restoration Site

Herman Dairy Restoration Site								
Full Delivery Provider	Restoration Systems							
	1101 Haynes Street, Suite 211							
	Raleigh, North Carolina 27604							
	George Howard and John Preyer							
	919-755-9490							
Designer	Axiom Environmental, Inc.							
	218 Snow Avenue							
	Raleigh, NC 27603							
	Grant Lewis							
	919-215-1693							
Construction Plans and Sediment and	Sungate Design Group, PA							
Erosion Control Plans	915 Jones Franklin Road							
	Raleigh, NC 27606							
	W. Henry Wells, Jr, PE 919-859-2243							
Construction and Planting Contractor	Land Mechanic Designs							
	780 Landmark Road							
	Willow Spring, NC 27592							
	Lloyd Glover 919-639-6132							
As-built Surveyor	K2 Design Group							
	5688 US Highway 70 East							
	Goldsboro, NC 27534							
	John Rudolph 919-751-0075							
Baseline Data Collection and Annual	Axiom Environmental, Inc.							
Monitoring	218 Snow Avenue							
	Raleigh, NC 27603							
	Grant Lewis 919-215-1693							

Table 4. Project Attribute Table Herman Dairy Restoration Site

Herman Dairy Restoration Site													
Project County	Alexan	der County, North C	arolina										
Physiographic Region	No	orthern Inner Piedmo	ont										
Ecoregion		Carolina Slate Belt											
Project River Basin		Catawba											
USGS HUC for Project (14 digit)	03050101120030												
NCDWQ Sub-basin for Project		03-08-32											
Identify planning area (LWP, RBRP, other)?	Yes – Upper Cata	wba River Basin Res	storation Priorities										
	•	2009											
WRC Class (Warm, Cool, Cold)		Warm											
% of project easement fenced or demarcated		100											
Beaver activity observed during design phase?		Yes											
	Unnamed	ddy Fork											
	UT 1	UT 2	UT 3										
Drainage Area	1.0	0.06	0.04										
Stream Order (USGS topo)	2nd	1st	1st										
Restored Length (feet)	2156	1684	760										
Perennial (P) or Intermittent (I)	P	P	I										
Watershed Type	Rural	Rural	Rural										
Watershed impervious cover	<5%	<5%	<5%										
NCDWQ AU/Index number	11-69-4	11-69-4	11-69-4										
NCDWQ Classification	С	С	С										
303d listed?	No	No	No										
Upstream of a 303d listed	Yes	Yes	Yes										
Reasons for 303d listed segment	aquatic	aquatic	aquatic										
	life/sediment	life/sediment	life/sediment										
Total acreage of easement	31.12	31.12	31.12										
Total existing vegetated acreage of easement	8	8	8										
Total planted restoration acreage	31.5	31.5	31.5										
Rosgen Classification of preexisting	Cd5	Fc5/6	Fc5/6										
Rosgen Classification of As-built	E/C 4/5	E/C 4/5	E/C 4/5										
Valley type	VIII	VIII	VIII										
Valley slope	0.0066	0.0052	0.0013										
Cowardin classification of proposed	R3UB1/2	R3UB1/2	R4SB3/4										
Trout waters designation	NA	NA	NA										
Species of concern, endangered etc.	NA	NA	NA										
Dominant Soil Series	Codorus/Hatboro	Codorus/Hatboro	Codorus/Hatboro										

Appendix C. Vegetation Assessment Data

Table 5. Vegetation Plot Mitigation Success Summary Table
Table 6. CVS Vegetation Metadata Table
Table 7. CVS Stem Count Total and Planted by Plot and Species
Vegetation Plot Photographs

Table 5. Vegetation Plot Mitigation Success Summary Table

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	Yes	
3	Yes	
4	No*	
5	Yes	000/
6	Yes	90%
7	Yes	
8	Yes	
9	Yes	
10	Yes	

^{*}Plot 4 did not meet success criteria based on planted stems alone; however, when including natural recruits of American sycamore (*Platanus occidentalis*) and elm (*Ulmus* sp.), plot 4 exceeds the required stem density.

Table 6. CVS Vegetation Metadata Table

able o. CvS vegetation Metadata	I
Report Prepared By	Corri Faquin
Date Prepared	11/14/2016 12:58
database name	RS-HermanDiary-2016-A-v2.3.1.mdb
database location	S:\Business\Projects\10\10-001 RS 10 Monitoring\Herman Dairy\2016\CVS
computer name	CORRI2-PC
file size	61960192
DESCRIPTION OF WORKSHEETS IN	THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted
Proj, total stems	stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of occurrences and percent of total stems impacted by
Damage	each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are
Planted Stems by Plot and Spp	excluded.
	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for
ALL Stems by Plot and spp	each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	Herman
project Name	Herman Dairy
Description	Stream and wetland restoration Alexander County NC
River Basin	Catawba
Sampled Plots	10

Table 7. Total and Planted Stems by Plot and Species Project Code Herman. Project Name: Herman Dairy

													Curren	t Plot D	ata (MY	/5 201 6)								Current Plot Data (MY5 2016)														
	Common Name		Herman-P-0001			Her	man-P	-0002	Her	man-P-	0003	Herman-P-0004			Herman-P-0005			Her	man-P-	0006	Herman-P-0007			Her	man-P-	0008													
Scientific Name		Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т													
Acer negundo	boxelder	Tree																		20)																		
Acer rubrum	red maple	Tree						12																															
Betula nigra	river birch	Tree	3	3	3	4	4	1 4	1	1	1	. 1	1	. 1	-			1	1	. 1	L			2	. 2	1													
Carpinus caroliniana	American hornbeam	Tree	1	1	1										2	2	2																						
Carya	hickory	Tree													1	1	1																						
Cephalanthus occidentalis	common buttonbush	Shrub																			1	. 1	. 1	1	. 1														
Cornus	dogwood	Shrub or Tree																																					
Cornus amomum	silky dogwood	Shrub	2	2	2																			1	. 1														
Diospyros virginiana	common persimmon	Tree			1																																		
Fraxinus pennsylvanica	green ash	Tree	1	1	1	1	1	և 1	4	4	7	3	3	3	1	1	1	2	2	2 2	2 5	5	5 5	5 6	6	; F													
Liriodendron tulipifera	tuliptree	Tree	1	1	1	1	1	L 6										5	5	5 5	5 2	. 2	2 2	2															
Nyssa	tupelo	Tree							4	4	4	-			5	5	5																						
Platanus occidentalis	American sycamore	Tree									1			1				1	1	. 1	L																		
Quercus	oak	Tree																																					
Quercus nigra	water oak	Tree													2	2	2																						
Quercus pagoda	cherrybark oak	Tree	2	2	2	2	2	2 2				2	. 2	. 2	. 2	2	2	3	3	3	3 2	. 2	2 2	2 3	3	;													
Quercus phellos	willow oak	Tree													1	1	1																						
Sambucus canadensis	Common Elderberry	Shrub																																					
Ulmus	elm	Tree												1																									
Ulmus americana	American elm	Tree																																					
Unknown		Shrub or Tree																																					
		Stem count	10	10	11	8	8	3 25	9	9	13	6	6	8	14	14	14	12	12	2 32	2 10	10) 10	13	13	1:													
	size (a							1		1		1		1		-	1			1			1																
•		size (ACRES)		0.02			0.02		0.02		0.02		0.02		0.02			0.02			0.02																		
		Species count	6	6	7	4		1 5	3	3	4	3	3	5	7	7	7	5	5	5 6	5 4		1 4	1 5	5	ŗ													
		Stems per ACRE	404.7	404.7	445.2	323.7	323.7	7 1012	364.2	364.2	526.1	242.8	242.8	323.7	566.6	566.6	566.6	485.6	485.6	1295	404.7	404.7	404.7	526.1	526.1	526.1													

Color for Density

Exceeds requirements by 10% PnoLS = Planted excluding livestakes

Exceeds requirements, but by less than 10% P-all = Planting including livestakes

Fails to meet requirements, by less than 10% T = All planted and natural recruits including livestakes

Fails to meet requirements by more than 10% T includes natural recruits

Table 7. Total and Planted Stems by Plot and Species (continued)
Project Code Herman. Project Name: Herman Dairy

Current Plot Data (MY5 2016)																										
			Her	man-P-	0009	Her	man-P-	0010	M	Y5 (201	L6)	M	/4 (201	.5)	M	Y3 (201	L4)	M	Y2 (20:	13)	N	1 Y1 (20 1	L 2)	M	IYO (2012	2)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Г
Acer negundo	boxelder	Tree									20			19			39)		9			15			
Acer rubrum	red maple	Tree			9			8			29)		33			20)		21			7	•		
Betula nigra	river birch	Tree	2	2	2	2	2	2 4	16	16	18	16	16	16	16	16	16	18	18	18	19	19	19	41	41	41
Carpinus caroliniana	American hornbeam	Tree							3	3	3	3	3	3	3	3	3	2	2	. 2	2	2	2	3	3	3
Carya	hickory	Tree							1	1	1	. 1	1	1	2	2	2	2	2	. 2	2 4	. 4	4			
Cephalanthus occidentalis	common buttonbush	Shrub							2	2	2	2	2	2	2	2	3	2	2	. 2						
Cornus	dogwood	Shrub or Tree						2			2															
Cornus amomum	silky dogwood	Shrub							3	3	3	3	3	3	3	3	3	3	3	3	2	2	2	2	2	2
Diospyros virginiana	common persimmon	Tree									1			1												
Fraxinus pennsylvanica	green ash	Tree	9	9	9	2	2	2 2	34	34	37	35	35	36	34	34	34	34	34	34	33	33	33	32	32	32
Liriodendron tulipifera	tuliptree	Tree	3	3	3	1	1	. 1	13	13	18	13	13	16	14	14	20	15	15	19	17	17	18	25	25	25
Nyssa	tupelo	Tree				3	3	3	12	12	12	12	12	12	15	15	15	16	16	16	14	14	14			
Platanus occidentalis	American sycamore	Tree	1	1	18				2	2	21	2	2	24	2	2	31	. 2	2	36			46	1	1	1
Quercus	oak	Tree																			1	. 1	1	6	6	6
Quercus nigra	water oak	Tree							2	2	2	2	2	2	2	2	2	2	2	. 2	2	. 2	2			
Quercus pagoda	cherrybark oak	Tree	1	1	1	3	3	3	20	20	20	20	20	20	21	21	21	. 22	22	22	22	22	22	23	23	2 3
Quercus phellos	willow oak	Tree							1	1	1	. 1	1	1	1	1	1	. 1	1	1	. 1	. 1	1			
Sambucus canadensis	Common Elderberry	Shrub												1												
Ulmus	elm	Tree									1															
Ulmus americana	American elm	Tree												2										2	2	2
Unknown		Shrub or Tree																1	1	1	. 1	. 1	1	10	10	10
		Stem count	16	16	42	11	11	. 23	109	109	191	110	110	192	115	115	210	120	120	188	118	118	187	145	145	145
		size (ares)		1	-		1	-		10	-		10		10			10			10			10		
		size (ACRES)		0.02			0.02			0.25			0.25		0.25			0.25			0.25			0.25		
		Species count	5	5	6	5	5	7	12	12	17	12	12	17	12	12	14	13	13	15	12	. 12	15	10	10	10
		Stems per ACRE	647.5	647.5	1700	445.2	445.2	930.8	441.1	441.1	772.9	445.2	445.2	777	465.4	465.4	849.8	485.6	485.6	760.8	477.5	477.5	756.8	586.8	586.8	586.8

Color for Density

Exceeds requirements by 10% PnoLS = Planted excluding livestakes

Exceeds requirements, but by less than 10% P-all = Planting including livestakes

Fails to meet requirements, by less than 10% T = All planted and natural recruits including livestakes

Fails to meet requirements by more than 10% T includes natural recruits

Herman Dairy 2016 (Year 5) Vegetation Monitoring Photographs Taken July 2016

Herman Dairy 2016 (Year 5) Vegetation Monitoring Photographs Taken July 2016 (continued)

Appendix D. Stream Assessment Data

Stream Station Photos
Table 8a-8c. Visual Assessment Tables
Table 9. Verification of Bankfull Events
Tables 10a-10c. Baseline Stream Data Summary
Tables 11a-11e. Monitoring Data-Dimensional Data Summary
Longitudinal Profile Plots
Cross-section Plots
Substrate Plots

Herman Dairy Fixed Station Photographs Taken July 2016

Herman Dairy Fixed Station Photographs (continued) Taken July 2016

Table 8A Reach ID Assessed Length Visual Stream Morphology Stability Assessment

Tributary 1 1374

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	19	19			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	20	20			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	100	100			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	100	100			100%			
		Thalweg centering at downstream of meander (Glide)	100	100			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	2	2			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	2	2			100%			

Table 8B Reach ID **Assessed Length** <u>Visual Stream Morphology Stability Assessment</u> Tributary 2 1522

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	39	39			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	37	37			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	100	100			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	100	100			100%			
		Thalweg centering at downstream of meander (Glide)	100	100			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	3	3			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	3			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	3	3			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	3	3			100%			

Table 8C Reach ID **Assessed Length** <u>Visual Stream Morphology Stability Assessment</u> Tributary 3

644

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	27	27			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	27	27			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	100	100			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	100	100			100%			
		Thalweg centering at downstream of meander (Glide)	100	100			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

Table 9. Verification of Bankfull Events

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
May 11, 2013	May 6, 2013	Bankfull event documented when sediment deposits were observed on top of banks after 3.00 inches of rain was documented* over a two-day period.	
July 18, 2013	June 6, 2013	Bankfull event documented after wrack was observed on top of bank and throughout floodplain after 4.27 inches of rain was documented* over a two-day period.	1-2
November 19, 2014	August 11, 2014	Bankfull event likely occurred after 3.61 inches of rain over a two-day period that was preceded by 0.56 inches and followed by an additional 0.78 inches as documented by an onsite rain gauge.	ł
July 31, 2015	April 19, 2015	Bankfull event likely occurred after 2.2 inches of rain was documented over a one day period by an onsite rain gauge.	1
November 23, 2015	November 21, 2015	Bankfull event documented after sediment deposits were observed in floodplain of the main tributary and 1.96 inches of rain was documented over a three day period by an onsite rain gauge.	3
August 8, 2016	July 3, 2016	Bankfull event likely occurred after 2.84 inches of rain was documented over a two day period by an onsite rain gauge.	

*Weather Underground (2013)

Table 10A. Baseline Morphology and Hydraulic Summary Herman Dairy UT 1

Parameter	USG	USGS Gage Data						Project Reference Stream UT Catawba*			ect Refe Reach 1			Design		As-built			
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	
BF Width (ft)	USGS	S gage da	ta is	16	19	18	9	12	10	9	10	10	16	18	17	15.5	16.4	16.1	
Floodprone Width (ft)	unava	ilable for	this	26	150	150	25	150	50	22	25	24			150			250	
BF Cross Sectional Area (ft2)		project				20.2			10.9			11.8	36	53	20.2	14	18.2	16.4	
BF Mean Depth (ft)				1.1	1.3	1.2	1.1	1.3	1.1	1.2	1.3	1.3	1.1	1.3	1.2	0.9	1.1	1	
BF Max Depth (ft)				1.9	2.3	2	1.5	1.8	1.7	1.5	1.6	1.6	1.4	1.8	1.6	1.2	1.6	1.4	
Width/Depth Ratio				12	17	16	8	13	10	7.2	8	7.6	12	16	14	14	17	16	
Entrenchment Ratio				1.6	9.6	7.9	2.7	14.6	4.9	2.3	2.7	2.5	8	10	9	15	16	16	
Bank Height Ratio				1.8	3.1	1.9			1			1	1	1.3	1.1			1	
Wetted Perimeter(ft)						===			===			===			===	15.9	16.8	16.7	
Hydraulic radius (ft)						===			===			===			===	0.9	1.1	1	
Pattern																			
Channel Beltwidth (ft)					attern of		30	40	35	35	58	45	50	101	67	50	101	67	
Radius of Curvature (ft)					and pools due to		12.5	25	18	10	32	16	34	168	50	34	168	50	
Meander Wavelength (ft)				straigh	itening a	activties	25	70	45	65	128	81	101	202	143	101	202	143	
Meander Width ratio							2.9	3.9	3.4	3.7	6.1	4.7	3	6	4	3	6	4	
Profile																			
Riffle length (ft)					attern of				===			===			===	23	65	36	
Riffle slope (ft/ft)					pools d		0.30%	0.36%	0.34%	0.34%	4.31%	2.48%	1.10%	1.65%	1.38%	0.00%	1.50%	0.64%	
Pool length (ft)				straigh	itening a	activties			===			===			===	10	54	32	
Pool spacing (ft)							22	62	39	29	103	60	50	134	67	50	134	67	
Substrate																			
d50 (mm)						===			===			===			===			===	
d84 (mm)						===			===			===			===			===	
Additional Reach Parameters																			
Valley Length (ft)						===			===			===			===				
Channel Length (ft)						===			===			===			===			2108	
Sinuosity						1.1			1.4			1.4			1.2			1.2	
Water Surface Slope (ft/ft)						0.62%			0.28%			1.27%			0.55%			0.53%	
BF slope (ft/ft)						===			===			===			===			===	
Rosgen Classification						Cd 5			E 4/5			E 4/5			Ec4/5			E/C 4/5	

^{*}UT to Catawba River Reference Site includes measurements from a stream measured in 2008.

Table 10B. Baseline Morphology and Hydraulic Summary **Herman Dairy UT 2**

Parameter	USGS	USGS Gage Data Min Max Med M			Pre-Existing Condition			ect Refe			ect Refe Reach 1			Design		As-built^			
Dimension	Min	Max N	1ed	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	
BF Width (ft)	USGS	S gage data	a is	6	15	9	9	12	10	9	10	10	5.3	6.1	5.7	6.8	7.9	6.9	
Floodprone Width (ft)	unavai	ilable for t	his	14	19	15	25	150	50	22	25	24			150			150	
BF Cross Sectional Area (ft2)		project				2.3			10.9			11.8			2.3	2.2	2.4	2.3	
BF Mean Depth (ft)				0.2	0.4	0.3	1.1	1.3	1.1	1.2	1.3	1.3	0.3	0.5	0.4	0.3	0.3	0.3	
BF Max Depth (ft)				0.4	0.8	0.5	1.5	1.8	1.7	1.5	1.6	1.6	0.4	0.6	0.5	0.5	0.5	0.5	
Width/Depth Ratio				16	76	30	8	13	10	7.2	8	7.6	12	16	14	20	27	21	
Entrenchment Ratio				1.3	2.2	1.6	2.7	14.6	4.9	2.3	2.7	2.5	14	38	26	19	22	22	
Bank Height Ratio				5	12	7			1			1	1	1.3	1.1			1	
Wetted Perimeter(ft)						===			===			===			===	7	8	7.1	
Hydraulic radius (ft)						===			===			===			===	0.3	0.3	0.3	
Pattern																			
Channel Beltwidth (ft)					attern o		30	40	35	35	58	45	17	34	23	17	34	23	
Radius of Curvature (ft)					pools d		12.5	25	18	10	32	16	11	57	17	11	57	17	
Meander Wavelength (ft)				straigr	itening a	activties	25	70	45	65	128	81	34	68	49	34	68	49	
Meander Width ratio							2.9	3.9	3.4	3.7	6.1	4.7	3	8	4	3	8	4	
Profile																			
Riffle length (ft)					attern o				===			===			===	6	44	14	
Riffle slope (ft/ft)					pools d		0.30%	0.36%	0.34%	0.34%	4.31%	2.48%	0.86%	1.29%	1.08%	0.00%	1.25%	0.39%	
Pool length (ft)				straigr	itening a	activties			===			===			===	6	32	13	
Pool spacing (ft)							22	62	39	29	103	60	17	46	23	17	46	23	
Substrate												,				•			
d50 (mm)						===			===			===			===			===	
d84 (mm)						===			===			===			===			===	
Additional Reach Parameters																			
Valley Length (ft)						===			===			===			===				
Channel Length (ft)						===			===			===			===			1696	
Sinuosity						1.04			1.4			1.4			1.2			1.2	
Water Surface Slope (ft/ft)						0.85%			0.28%			1.27%			0.43%			0.40%	
BF slope (ft/ft)						===			===			===			===			===	
Rosgen Classification						Fc 5/6			E 4/5			E 4/5			Ec4/5			C 4/5	

[^]Measured as-built numbers do not include D-type reach.
*UT to Catawba River Reference Site includes measurements from a stream measured in 2008.

Table 10C. Baseline Morphology and Hydraulic Summary Herman Dairy UT 3

Parameter	USGS	USGS Gage Data			Pre-Existing Condition			Project Reference Stream UT Catawba*			Project Reference Reach 1			Design		As-built			
Dimension	Min	Max N	Ied	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	
BF Width (ft)	USGS	gage data	ı is	6	9	7	9	12	10	9	10	10	6	7	6.5	6.8	8.5	7.7	
Floodprone Width (ft)	unavai	ilable for t	his	12	13	12	25	150	50	22	25	24			150			150	
BF Cross Sectional Area (ft2)	1	project				3			10.9			11.8			3	2.2	3.1	2.7	
BF Mean Depth (ft)				0.3	0.5	0.4	1.1	1.3	1.1	1.2	1.3	1.3	0.4	0.6	0.5	0.3	0.4	0.4	
BF Max Depth (ft)				0.6	0.9	0.7	1.5	1.8	1.7	1.5	1.6	1.6	0.6	0.8	0.7	0.5	0.5	0.5	
Width/Depth Ratio				13	31	17	8	13	10	7.2	8	7.6	12	16	14	21	23	22	
Entrenchment Ratio				1.4	1.9	1.7	2.7	14.6	4.9	2.3	2.7	2.5	22	25	23	17	22	19.5	
Bank Height Ratio				4	7	6			1			1	1	1.3	1.1			1	
Wetted Perimeter(ft)						===			===			===			===	7	8.7	7.9	
Hydraulic radius (ft)						===			===			===			===	0.3	0.4	0.4	
Pattern																			
Channel Beltwidth (ft)					attern of		30 12.5	40	35	35	58	45	20	39	26	20	39	26	
Radius of Curvature (ft)					and pools due to			25	18	10	32	16	13	65	20	13	65	20	
Meander Wavelength (ft)				straigh	straightening activties		25	70	45	65	128	81	39	78	55	39	78	55	
Meander Width ratio							2.9	3.9	3.4	3.7	6.1	4.7	3	8	4	3	8	4	
Profile																			
Riffle length (ft)					attern of				===			===			===	5	26	11	
Riffle slope (ft/ft)					pools d		0.30%	0.36%	0.34%	0.34%	4.31%	2.48%	0.22%	0.33%	0.28%	0.00%	1.59%	0.22%	
Pool length (ft)				straigh	itening a	activties			===			===			===	7	21	13	
Pool spacing (ft)							22	62	39	29	103	60	20	52	26	20	52	26	
Substrate																			
d50 (mm)						===			===			===			===			===	
d84 (mm)						===			===			===			===			===	
Additional Reach Parameters																	-	-	
Valley Length (ft)						===			===			===			===				
Channel Length (ft)						===			===			===			===			743	
Sinuosity						1.01			1.4			1.4			1.2			1.2	
Water Surface Slope (ft/ft)						0.40%			0.28%			1.27%			0.11%			0.12%	
BF slope (ft/ft)						===			===			===			===			===	
Rosgen Classification						Fc 5/6			E 4/5			E 4/5			Ec4/5			C 4/5	

^{*}UT to Catawba River Reference Site includes measurements from a stream measured in 2008.

Table 11A. Morphology and Hydraulic Monitoring Summary Herman Dairy - Stream and Wetland Restoration Site

Parameter		Cross	Section	1 Pool	(UT 1)			Cross	Section	2 Riffle	(UT 1)			Cross	Section	3 Riffle	(UT 1)		Cross Section 4 Pool (UT 1)					
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	l
BF Width (ft)	20.9	19.6	18.1	24.8	20.9	26.7	16.9	17.1	17.4	18.2	17.2	17.5	16.4	17	18.9	14	13	8.9	16.8	18.2	20.2	10.2	14	Τ
Floodprone Width (ft)							250	250	250	250	250	250	250	250	250	250	250	250						
BF Cross Sectional Area (ft2)	19.9	18.9	17.4	17.4	14.8	14.2	16.3	16	14.9	14	11	9.3	16.7	17	17.5	10	7.9	8.3	14.4	14.5	13.8	10.5	10.6	
BF Mean Depth (ft)	1.0	1.0	1.0	0.7	0.7	0.5	1.0	0.9	0.9	0.8	0.6	0.5	1.0	1.0	0.9	0.7	0.6	0.9	0.9	0.8	0.7	1.0	0.8	
BF Max Depth (ft)	2.3	2.2	2.1	1.7	1.8	1.6	1.4	1.5	1.4	1.5	1.3	1.4	1.4	1.4	1.4	1.4	1.4	1.3	2.1	2.1	2.3	1.5	1.7	
Width/Depth Ratio							17.5	18.3	20.3	23.7	26.9	32.9	16.1	17.0	20.4	19.6	21.4	9.5						
Entrenchment Ratio							14.8	14.6	14.4	13.7	14.5	14.3	15.2	14.7	13.2	17.9	19.2	28.1						
Bank Height Ratio							1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0						
Wetted Perimeter (ft)	21.7	20.4	18.8	25.6	21.6	27.3	17.2	17.4	17.8	18.6	17.5	18.1	16.8	17.6	19.5	14.6	13.7	9.6	17.6	19.1	21.2	10.9	14.8	
Hydraulic Radius (ft)	0.9	0.9	0.9	0.6	0.7	0.5	0.9	0.9	0.8	0.8	0.6	0.5	1	1	0.9	0.7	0.6	0.9	0.8	0.8	0.6	1	0.7	Ι
Substrate																								Ī
d50 (mm)									0.4	0.4	NA	0.1			0.2	0.2	0.2	0.2						
d84 (mm)									15	14	1	1			10	4	1	1						
Parameter	MY	7-00 (20:	12)	M	Y-01 (2	012)	MY	MY-02 (2013)			MY-03 (2014)			MY-04 (2015)			Y-05 (20	016)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Pattern																								
Channel Beltwidth (ft)	50	101	67	50	101	67	50	101	67	50	101	67	50	101	67	50	101	67						
Radius of Curvature (ft)	34	168	50	34	168	50	34	168	50	34	168	50	34	168	50	34	168	50						
Meander Wavelength (ft)	50	101	67	50	101	67	50	101	67	50	101	67	50	101	67	50	101	67						
Meander Width Ratio	3	6	4	3	6	4	3	6	4	3	6	4	3	6	4	3	6	4						
Profile																								
Riffle Length (ft)	23	65	36	16	49	28	5	82	33	5	117	36	8	135	49	6	93	35						
Riffle Slope (ft/ft)	0.00%	1.50%	0.64%	0.05%	1.05%	0.57%	0.14%	1.92%	0.65%	0.11%	1.13%	0.37%	0.01%	1.27%	0.41%	0.17%	1.21%	0.56%						
Pool Length (ft)	10	54	32	18	62	35	12	63	31	7	49	30	11	56	30	11	51	33						
Pool Spacing (ft)	50	134	67	50	134	67	50	134	67	50	134	67	50	134	67	50	134	67						
Additonal Reach Parameters																			1					
Valley Length (ft)		1757			1373			1525			1513			1508			1319							
Channel Length (ft)		2,108			1,648			1830			1816			1809			1583							
Sinuosity		1.2			1.2			1.2			1.2		1.2 1.2											
Water Surface Slope (ft/ft)		0.0053			0.0045			0.0054			0.0051		0.005 0.0046											
BF Slope (ft/ft)																								
Rosgen Classification		C/E 4/5 C-4/5			C 4/5 C 4/5			C4/5 C4/5																

Table 11B. Morphology and Hydraulic Monitoring Summary Herman Dairy - Stream and Wetland Restoration Site

Parameter Parameter			ection 5		(UT 1)			Cross	Section	6 Pool	(UT 1)			Cross S	Section 7	Riffle ((UT 1)		C	ross S	ection	8 Poo	l (UT	1)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	16.1	16.3	16.7	9.5	11	8.8	20	17.2	19.5	8.3	14.8	8.8	15.5	14.6	16.8	10.4	9.7	9.2	16.1	18.4	18.7	9.6	9.1	10
Floodprone Width (ft)	250	250	250	250	250	250							250	250	250	250	250	250						
BF Cross Sectional Area (ft2)	18.2	16.6	15.2	7.5	8.9	9.5	20.3	17.7	15	7.8	8	10.5	14	14	14.5	9.3	8	10.6	15.5	16	16	11.7	10.3	13.4
BF Mean Depth (ft)	1.1	1.0	0.9	0.8	0.8	1.1	1.0	1.0	0.8	0.9	0.5	1.2	0.9	1.0	0.9	0.9	0.8	1.2	1.0	0.9	0.9	1.2	1.1	1.3
BF Max Depth (ft)	1.6	1.4	1.5	1.1	1.4	1.6	2.3	2.2	2.2	1.5	1.5	1.8	1.2	1.4	1.5	1.5	1.4	1.6	1.9	2.1	2.3	2.1	1.8	2.2
Width/Depth Ratio	14.2	16.0	18.3	12.0	13.6	8.2							17.2	15.2	19.5	11.6	11.8	8.0						
Entrenchment Ratio	15.5	15.3	15.0	26.3	22.7	28.4							16.1	17.1	14.9	24.0	25.8	27.2						
Bank Height Ratio	1	1	1	1	1	1							1	1	1	1	1	1						
Wetted Perimeter (ft)	16.8	16.9	17.2	10	11.8	9.6	21	18.3	20.5	9.1	15.5	10.2	15.9	15.1	17.3	11.2	10.4	10.4	16.8	19.1	19.6	10.8	10.1	11.2
Hydraulic Radius (ft)	1.1	1	0.9	0.8	0.8	1	1	1	0.7	0.9	0.5	1	0.9	0.9	0.8	0.8	0.8	1	0.9	0.8	0.8	1.1	1	1.2
Substrate																								
d50 (mm)																								
d84 (mm)																								
Parameter	MY	-00 (20	12)	MY	7-01 (20)12)	MY	7-02 (20	13)	MY	7-03 (20	14)	M	Y-04 (20	15)	MY	7-05 (20	16)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Pattern																								
Channel Beltwidth (ft)	50	101	67	50	101	67	50	101	67	50	101	67	50	101	67	50	101	67						
Radius of Curvature (ft)	34	168	50	34	168	50	34	168	50	34	168	50	34	168	50	34	168	50						
Meander Wavelength (ft)	50	101	67	50	101	67	50	101	67	50	101	67	50	101	67	50	101	67						
Meander Width Ratio	3	6	4	3	6	4	3	6	4	3	6	4	3	6	4	3	6	4						
Profile																								
Riffle Length (ft)	23	65	36	16	49	28	5	82	33	5	117	36	8	135	49	6	93	35						
Riffle Slope (ft/ft)	0.00%	1.50%	0.64%	0.05%	1.05%	0.57%	0.14%	1.92%	0.65%	0.11%	1.13%	0.37%	0.01%	1.27%	0.41%	0.17%	1.21%	0.56%						
Pool Length (ft)	10	54	32	18	62	35	12	63	31	7	49	30	11	56	30	11	51	33						
Pool Spacing (ft)	50	134	67	50	134	67	50	134	67	50	134	67	50	134	67	50	134	67						
Additonal Reach Parameters																								
Valley Length (ft)		1757			1373			1525			1513			1508			1319							
Channel Length (ft)		2,108			1,648			1830			1816			1809			1583							
Sinuosity		1.2			1.2			1.2			1.2			1.2			1.2							
Water Surface Slope (ft/ft)		0.0053			0.0045			0.0054			0.0051			0.005			0.0046							
BF Slope (ft/ft)																								
Rosgen Classification		C/E 4/5			C-4/5			C 4/5			C 4/5			C4/5			C4/5							

Table 11C. Morphology and Hydraulic Monitoring Summary **Herman Dairy - Stream and Wetland Restoration Site**

Parameter Parameter			Section		UT 1)			Cross S	ection 1	10 Riffle	e (UT 1)			Cross S	Section 1	1 Riffle	(UT2)		C	ross Se	ection	12 Po	ol (U'I	(2)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	18.7	16.2	16.6	17.8	17.5	16.9	16	17	15.5	8.4	8.4	8.5	7.9	5.2	5.8	6.1	6	6.8	5.5	5.8	5.3	5.2	5.4	6.3
Floodprone Width (ft)							250	250	250	250	250	250	150	150	150	150	150	150						
BF Cross Sectional Area (ft2)	15.7	15.4	16	12.8	13	12.4	16	15.6	13.2	8.5	8.3	8.3	2.3	1.3	1.4	1.3	1.3	1.5	2.3	2.1	2	2	2	2.2
BF Mean Depth (ft)	0.8	1.0	1.0	0.7	0.7	0.7	1.0	0.9	0.9	1.0	1.0	1.0	0.3	0.3	0.2	0.2	0.2	0.2	0.4	0.4	0.4	0.4	0.4	0.3
BF Max Depth (ft)	2	2.3	2.4	2	2.1	2.1	1.3	1.4	1.3	1.5	1.5	1.5	0.5	0.4	0.4	0.3	0.4	0.4	0.8	0.7	0.7	0.7	0.6	0.7
Width/Depth Ratio							16.0	18.5	18.2	8.3	8.5	8.7	27.1	20.8	24.0	28.6	27.7	30.8						
Entrenchment Ratio							15.6	14.7	16.1	29.8	29.8	29.4	19.0	28.8	25.9	24.6	25.0	22.1			-		-	
Bank Height Ratio							1	1	1	1	1	1	1	1	1	1	1	1						
Wetted Perimeter (ft)	19.5	17	17.8	19	18.8	18.2	16.5	17.6	15.9	9.1	9.1	9.5	8	5.3	5.9	6.2	6.1	6.9	5.8	6	5.5	5.4	5.6	6.5
Hydraulic Radius (ft)	0.8	0.9	0.9	0.7	0.7	0.7	1	0.9	0.8	0.9	0.9	0.9	0.3	0.2	0.2	0.2	0.2	0.2	0.4	0.3	0.4	0.4	0.4	0.3
Substrate																								
d50 (mm)									9.8	8	0.8	1.2												
d84 (mm)									21	17	13	20												
Parameter	MY	-00 (20	12)	MY	7-01 (20	12)	MY	7-02 (20	13)	MY	7-03 (20	14)	M	Y-04 (20	15)	MY	7-05 (20	16)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Pattern																								
Channel Beltwidth (ft)	50	101	67	50	101	67	50	101	67	50	101	67	50	101	67	50	101	67						
Radius of Curvature (ft)	34	168	50	34	168	50	34	168	50	34	168	50	34	168	50	34	168	50						
Meander Wavelength (ft)	50	101	67	50	101	67	50	101	67	50	101	67	50	101	67	50	101	67						
Meander Width Ratio	3	6	4	3	6	4	3	6	4	3	6	4	3	6	4	3	6	4						
Profile																								
Riffle Length (ft)	17	111	51	16	49	28	5	82	33	5	117	36	8	135	49	3	31	15						
Riffle Slope (ft/ft)	0.43%	4.80%	1.54%	0.05%	1.05%	0.57%	0.14%	1.92%	0.65%	0.11%	1.13%	0.37%	0.01%	1.27%	0.41%	0.00%	3.50%	0.58%						
Pool Length (ft)	26	78	46	18	62	35	12	63	31	7	49	30	11	56	30	5	20	11						
Pool Spacing (ft)	76	176	126	50	134	67	50	134	67	50	134	67	50	134	67	50	134	67						
Additonal Reach Parameters																			1					
Valley Length (ft)		1757			1373			1525			1513			1508			1279							
Channel Length (ft)		2,108			1,648			1830			1816			1809			1535		1					
Sinuosity		1.2			1.2			1.2			1.2			1.2			1.2							
Water Surface Slope (ft/ft)		0.0053			0.0045			0.0054			0.0051			0.005			0.0044		1					
BF Slope (ft/ft)																			1					
Rosgen Classification		C/E 4/5			C-4/5			C 4/5			C 4/5			C4/5			C4/5		1					

Table 11D. Morphology and Hydraulic Monitoring Summary Herman Dairy - Stream and Wetland Restoration Site

Parameter	(Cross Se	ction 13	Riffle	(UT 2)			Cross	Section	14 Pool	(UT 2)			Cross	Section 1	5 Riffle	(UT2)		C	ross S	ection	16 Po	ol (UT	(2)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.9	7	6.3	6.5	6.6	7.8	6.6	6.8	6	5.8	6	5.7	6.8	6.9	6.9	7.1	6.8	7	5.7	7.1	5.6	3.6	5.8	5.3
Floodprone Width (ft)	150	150	150	150	150	150							150	150	150	150	150	150						
BF Cross Sectional Area (ft2)	2.4	1.5	1.7	1.7	1.6	1.7	2.4	2.6	2.5	2.4	2.5	2.4	2.2	2.2	2.2	1.2	1.6	1.8	2.3	2.4	2.1	1.4	1.6	1.7
BF Mean Depth (ft)	0.3	0.2	0.3	0.3	0.2	0.2	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.2	0.2	0.3	0.4	0.3	0.4	0.4	0.3	0.3
BF Max Depth (ft)	0.5	0.5	0.5	0.6	0.3	0.4	0.7	0.7	0.8	0.8	0.8	0.7	0.5	0.5	0.5	0.3	0.4	0.5	0.8	0.8	0.9	0.8	0.8	0.9
Width/Depth Ratio	19.8	32.7	23.3	24.9	27.2	35.8							21.0	21.6	21.6	42.0	28.9	27.2						
Entrenchment Ratio	21.7	21.4	23.8	23.1	22.7	19.2							22.1	21.7	21.7	21.1	22.1	21.4						
Bank Height Ratio	1	1	1	1	1	1							1	1	1	1	1	1						
Wetted Perimeter (ft)	7.1	7.2	6.5	6.7	6.8	8	6.8	7	6.3	6.1	6.2	5.9	7	7.1	7.1	7.2	7	7.2	6	7.3	6	4.1	6.3	5.7
Hydraulic Radius (ft)	0.3	0.2	0.3	0.3	0.2	0.2	0.3	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.2	0.2	0.2	0.4	0.3	0.3	0.3	0.3	0.3
Substrate																								
d50 (mm)			24.6	26.5	24.6	21.6									24.2	23.9	22	20.3				-		
d84 (mm)			40	48	43	38									45	49	45	43						
Parameter	MY	7-00 (20)	12)	MY	7-01 (20	012)	MY	7-02 (20	13)	MY	7-03 (20	14)	M	Y-04 (20	015)	MY	7-05 (20	16)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Pattern																								
Channel Beltwidth (ft)	17	34	23	17	34	23	17	34	23	17	34	23	17	34	23	17	34	23						
Radius of Curvature (ft)	11	57	17	11	57	17	11	57	17	11	57	17	11	57	17	11	57	17						
Meander Wavelength (ft)	34	68	49	34	68	49	34	68	49	34	68	49	34	68	49	34	68	49						
Meander Width Ratio	3	6	4	3	6	4	3	6	4	3	6	4	3	6	4	3	6	4						
Profile																								
Riffle Length (ft)	6	44	14	6	41	11	6	28	12	6	34	12	3	24	12	3	31	15						
Riffle Slope (ft/ft)	0.00%	1.25%	0.39%	0	3.39	0.42	0.00%	3.33%	0.42%	0.00%	2.76%	0.39%	0.00%	2.94%	0.51%	0.00%	3.50%	0.58%						
Pool Length (ft)	6	32	13	7	21	11	6	21	11	4	20	10	5	37	13	5	20	11						
Pool Spacing (ft)	17	46	23	17	46	23	17	46	23	17	46	23	17	46	23	50	134	67						
Additonal Reach Parameters																								
Valley Length (ft)		1413			1522			1298			1316			1314			1279							
Channel Length (ft)		1,696			1,827			1557			1579			1577			1535							
Sinuosity		1.2			1.2			1.2			1.2			1.2			1.2							
Water Surface Slope (ft/ft)		0.004			0.0041			0.0042			0.0043			0.0044			0.0044							
BF Slope (ft/ft)																								
Rosgen Classification		C/E 4/5			C 4/5			C 4/5			C 4/5			C4/5			C4/5							

Table 11E. Morphology and Hydraulic Monitoring Summary Herman Dairy - Stream and Wetland Restoration Site

Parameter	(Cross Se	ection 17	7 Riffle	(UT 3)			Cross	Section	18 Pool	(UT 3)			Cross S	ection 1	9 Pool	(UT3)		Cr	oss Se	ction 1	20 Rif	fle (U'	T3)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.5	7.7	7.7	8.5	8	8	6.2	6.2	6.5	6.5	6.4	5.9	6.8	6.5	6.4	6.2	9	7.2	9.5	7.8	7.5	7.2	7.5	7.5
Floodprone Width (ft)	150	150	150	150	150	150													150	150	150	150	150	150
BF Cross Sectional Area (ft2)	3.1	2.6	2.7	2.9	2.7	2.8	3.8	3.7	3.6	3.6	3.5	3.4	3	3	2.9	2.7	2.9	3.4	3.2	2.3	2.6	2.4	2.8	3.1
BF Mean Depth (ft)	0.4	0.3	0.4	0.3	0.3	0.4	0.6	0.6	0.6	0.6	0.5	0.6	0.4	0.5	0.5	0.4	0.3	0.5	0.3	0.3	0.3	0.3	0.4	0.4
BF Max Depth (ft)	0.5	0.5	0.5	0.5	0.5	0.5	1	1.1	1	1	1	1	0.9	1	0.9	0.9	0.9	1	0.6	0.4	0.5	0.5	0.5	0.7
Width/Depth Ratio	23.3	22.8	22.0	24.9	23.7	22.9													28.2	26.5	21.6	21.6	20.1	18.4
Entrenchment Ratio	17.6	19.5	19.5	17.6	18.8	18.7													15.8	19.2	20.0	20.8	20.0	19.9
Bank Height Ratio	1	1	1	1	1	1													1	1	1	1	1	1
Wetted Perimeter (ft)	8.7	7.8	7.8	8.7	8.2	8.2	6.7	6.6	6.9	7	6.8	6.4	7.2	6.9	6.7	6.5	9.2	7.6	9.7	7.9	7.7	7.3	7.7	7.8
Hydraulic Radius (ft)	0.4	0.3	0.3	0.3	0.3	0.3	0.6	0.6	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.3	0.4	0.3	0.3	0.3	0.3	0.4	0.4
Substrate																								
d50 (mm)			28.2	27.7	24	20.1																		
d84 (mm)			43	45	48	46																		
Parameter	MY	7-00 (20)	12)	MY	Y-01 (20	012)	MY	7-02 (20	13)	M	Y-03 (20	14)	MY	7-04 (20	15)	M	Y-05 (20	016)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Pattern																								
Channel Beltwidth (ft)	20	39	26	20	39	26	20	39	26	20	39	26	20	39	26	20	39	26						
Radius of Curvature (ft)	13	65	20	13	65	20	13	65	20	13	65	20	13	65	20	13	65	20						
Meander Wavelength (ft)	39	78	55	39	78	55	39	78	55	39	78	55	39	78	55	39	78	55						
Meander Width Ratio	3	6	4	3	6	4	3	6	4	3	6	4	3	6	4	3	6	4						
Profile																								
Riffle Length (ft)	5	26	11	5	27	9	4	27	10	5	27	11	5	19	11	5	25	9						
Riffle Slope (ft/ft)	0.00%	1.59%	0.22%				0.00%	1.43%	0.28%	0.00%	1.66%	0.26%	0.00%	2.32%	0.54%	#####	1.42%	0.29%						
Pool Length (ft)	8	21	13	7	24	13	7	21	13	6	21	14	7	22	13	7	24	14						
Pool Spacing (ft)	20	52	26	20	52	26	20	52	26	20	52	26	20	52	26	20	52	26						
Additonal Reach Parameters																								
Valley Length (ft)		619			645			616			609			601			596							
Channel Length (ft)		743			774			739			731			721			715							
Sinuosity		1.2			1.2			1.2			1.2			1.2			1.2							
Water Surface Slope (ft/ft)		0.0012						0.0015			0.0015			0.0013			0.0018							
BF Slope (ft/ft)																								
Rosgen Classification		C/E 4/5			C 4/5			C 4/5			C 4/5			C4/5			C4/5							

Herman Dairy - Year 5 (2016) Profile Tributary 1 Profile 2/20/16 Perkinson, Jernigan

CIEW	i cikiiisoli, jeriliga	111															
	2012			2012			2013			2014			2015			2016	
	As-built Surve		١ ,	Year 1 Monitoring \	Cuman	١ ,	Year 2 Monitoring \	Cuman		Year 3 Monitoring \	Carment		ear 4 Monitoring \S			Year 5 Monitoring \S	C
Station	Bed Elevation	Water Elevation		Bed Elevation		Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	
	93.3	93.9	309.6	97.6	98.9	216.9	97.5	98.2	287.0	98.6	98.8	287.0	98.4	99.0	225.6	98.4	98.8
0.0		93.9	328.9	97.8 97.8	98.9		97.3 97.9	98.2 98.2	292.2	98.6 98.6	98.8 98.9						
34.6	94.0				98.9 99.0	233.1		98.2 98.3	292.2		98.9 98.9	302.5	97.7 97.9	99.1 99.2	233.7	97.7	98.8
64.3	94.8	95.2	338.1	98.4		251.0	97.7			98.1		316.7			242.8	98.0	98.8
74.2	95.1	95.4	361.2	98.6	99.1	255.4	97.3	98.2	323.8	98.2	99.1	323.6	98.2	99.3	262.0	98.0	98.9
113.3	97.0	97.5	372.6	97.8	99.2	258.6	97.3	98.3	339.8	98.7	99.1	355.9	98.8	99.4	268.6	98.4	98.9
133.7	97.2	97.9	384.9	98.1	99.2	263.3	98.1	98.4	356.5	98.8	99.2	357.8	98.2	99.4	293.8	98.5	99.1
138.4	96.2	98.0	399.8	98.8	99.2	288.3	98.3	98.7	363.3	98.5	99.2	388.1	98.3	99.5	301.1	97.9	99.2
145.3	96.3	97.9	425.9	98.8	99.2	295.3	97.6	98.7	374.5	98.1	99.3	391.4	98.8	99.6	324.3	98.1	99.2
154.5	96.3	98.0	442.1	98.2	99.2	307.2	97.5	98.7	381.1	98.6	99.3	419.2	98.9	99.7	330.8	98.6	99.2
167.2	97.5	98.0	448.7	98.0	99.3	316.9	97.5	98.7	402.4	98.8	99.4	422.9	98.4	99.7	356.2	98.7	99.3
182.9	97.5	98.1	460.2	98.8	99.3	326.0	97.6	98.7	408.9	98.8	99.4	451.4	98.7	100.2	364.4	98.4	99.4
195.8	97.6	98.1	495.5	99.0	99.5	331.1	98.3	98.8	416.2	98.7	99.4	464.7	99.2	100.2	385.2	98.1	99.5
204.1	97.1	98.1	505.1	98.4	99.5	358.4	98.4	99.0	425.2	98.9	99.4	484.6	99.4	100.4	391.4	98.8	99.5
221.9	96.9	98.1	517.5	98.5	99.5	363.8	97.9	99.1	433.9	99.3	99.5	493.4	98.7	100.5	426.8	99.1	99.6
225.5	97.4	98.1	534.0	98.6	99.4	368.9	97.7	99.1	438.3	98.3	99.5	509.5	99.0	100.6	433.5	98.5	99.6
240.5	97.8	98.2	542.1	99.2	99.5	378.8	97.9	99.1	452.1	98.6	99.5	519.5	99.0	100.7	451.9	98.7	99.7
259.8	97.8	98.3	569.5	99.1	99.6	386.9	98.0		458.1	98.9	99.6	524.7	100.0	100.6	465.3	98.7	99.7
263.0	97.3	98.3	587.1	98.6	99.6	396.6	98.6	99.1	471.9	99.0	99.6	574.5	99.8	100.7	470.6	99.0	99.8
266.2	97.3	98.3	599.2	98.6	99.6	423.5	98.8	99.1	496.2	99.1	99.7	584.0	99.2	100.8	497.8	99.2	99.9
269.8	97.9	98.4	615.4	99.0	99.6	430.5	98.1	99.2	500.7	98.5	99.7	602.9	99.2	100.9	501.2	99.1	99.9
282.4	98.2	98.5	620.7	99.4	99.7	438.9	97.8	99.2	510.7	98.7	99.7	607.3	100.3	100.8	513.0	98.7	100.0
297.4	98.4	98.7	647.1	99.6	99.9	446.6	97.8	99.2	522.8	98.5	99.8	645.9	100.3	101.0	516.3	99.3	100.0
303.3	97.6	98.7	656.5	99.1	100.0	452.6	98.3	99.1	535.7	98.8	99.8	667.3	100.5	101.1	519.0	98.8	100.0
331.6	97.7	98.7	665.6	99.0	100.0	458.2	98.8	99.3	541.2	99.2	99.8	671.0	100.0	101.0	541.2	99.1	100.2
338.2	98.3	98.8	672.0	99.7	100.0	472.7	98.9	99.3	546.1	98.9	99.9	696.2	100.0	101.1	544.8	99.6	100.2
364.5	98.4	98.9	705.7	99.8	100.2	493.2	98.9	99.5	553.4	98.9	99.9	699.4	100.6	101.2	586.2	99.7	100.4
270.0	07.0	00.0	710.0	00.1	100.2	502.7	00.2	00.5	550.4	00.7	00.0	707.0	100.0	101.2	500.2	00.0	100.4

	As-built	2012	2013	2014	2015	2016
Avg. Water Surface Slope	0.0053	0.0045	0.0054	0.0051	0.0050	0.0046
Riffle Length	36	28	36	38	49	35
Avg. Riffle Slope	0.0064	0.0057	0.0075	0.0049	0.0041	0.0056
Pool Length	32	35	32	30	30	33

Herman Dairy - Year 5 (2016) Profile Tributary 1 Profile 2/20/16

	2012			2012			2013			2014			2015			2016	
	As-built Survey			Year 1 Monitoring \S			Year 2 Monitoring \S			Year 3 Monitoring \S			Year 4 Monitoring \S			ear 5 Monitoring \S	
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
990.2	100.6	101.7	994.2	101.2	102.0	990.0	100.6	101.8	992.7	101.5	102.2	998.1	101.6	102.3	995.6	101.7	102.4
1001.8	100.7	101.7	1015.4	101.2	102.1	1001.2	100.6	101.8	1002.4	101.5	102.2	1002.5	101.2	102.3	1000.0	101.2	102.4
1015.7	101.4	101.7	1027.3	101.5	102.1	1005.6	100.9	101.8	1008.0	100.9	102.2	1018.4	101.6	102.3	1004.8	101.4	102.4
1053.0	101.5	101.9	1056.7	101.7	102.3	1020.3	101.5	101.9	1013.1	101.0	102.3	1023.6	101.8	102.4	1006.2	101.8	102.4
1061.5	101.0	101.9	1069.3	101.0	102.3	1052.0	101.8	102.3	1022.9	101.5	102.3	1063.3	101.8	102.5	1034.8	102.0	102.7
1094.8	101.1	102.0	1085.1	101.0	102.3	1066.9	101.0	102.3	1045.3	101.7	102.3	1071.0	101.5	102.5	1041.2	101.7	102.7
1106.1	101.6	102.2	1105.4	101.3	102.4	1079.1	100.7	102.3	1056.9	101.8	102.3	1092.6	101.3	102.6	1056.7	101.5	102.8
1141.7	102.0	102.4	1111.8	101.8	102.4	1095.5	100.9	102.3	1062.7	101.3	102.4	1096.7	102.1	102.7	1066.8	101.7	102.8
1145.7	101.2	102.3	1139.4	102.2	102.7	1106.7	101.1	102.3	1081.8	100.9	102.4	1140.7	102.2	102.9	1080.2	102.0	102.7
1158.5	101.1	102.3	1151.1	100.8	102.7	1115.3	101.9	102.3	1097.5	101.6	102.7	1146.3	102.0	102.9	1097.7	102.2	102.8
1163.3	102.0	102.4	1158.5	101.0	102.7	1128.3	102.1	102.5	1104.2	102.4	103.0	1164.0	102.0	102.9	1141.2	102.4	102.9
1183.3	102.4	102.7	1168.8	102.1	102.7	1147.1	101.9	102.6	1144.4	102.5	103.2	1169.2	102.5	102.9	1148.1	101.9	103.0
1197.8	102.3	102.8	1174.7	102.2	102.7	1149.9	101.3	102.6	1147.7	102.0	103.2	1201.7	102.4	103.1	1163.3	102.1	103.1
1214.6	102.0	102.8	1199.3	102.4	102.9	1157.0	101.2	102.6	1162.6	102.0	103.2	1213.2	101.9	103.0	1175.6	101.7	103.1
1226.9	101.9	102.8	1207.4	101.2	103.0	1165.6	101.3	102.6	1183.3	102.6	103.3	1238.1	102.1	103.3	1179.2	102.5	103.1
1242.5	102.1	102.8	1219.3	101.9	103.0	1170.8	102.1	102.6	1190.6	102.6	103.3	1251.2	101.8	103.3	1217.1	102.4	103.2
1251.9	102.4	102.8	1235.6	101.9	103.0	1188.6	102.4	102.8	1211.9	102.7	103.4	1257.6	102.8	103.4	1221.3	101.8	103.2
1275.5	102.6	102.8	1248.9	102.1	103.1	1202.2	102.1	102.8	1215.7	101.9	103.4	1274.8	102.7	103.4	1238.0	102.2	103.2
1280.7	101.7	102.9	1258.6	102.6	103.2	1208.7	100.9	102.9	1221.5	101.8	103.4	1279.4	102.1	103.4	1242.7	102.6	103.2
1289.3	102.0	102.9	1276.2	102.5	103.3	1226.2	101.7	102.9	1227.7	102.8	103.5	1289.0	102.0	103.5	1247.6	102.3	103.3
1300.0	102.6	102.8	1285.3	101.6	103.3	1234.8	102.0	102.9	1256.2	102.8	103.6	1294.9	102.9	103.6	1256.8	102.3	103.3
1321.8	102.5	102.9	1295.7	102.4	103.3	1257.0	102.4	102.9	1288.7	103.1	103.8	1329.8	103.1	103.6	1264.7	102.8	103.3
1364.7	102.6		1302.3	102.6	103.4	1270.7	102.5	103.0	1319.8	103.1	103.9	1349.3	103.2	103.8	1284.9	102.8	103.5
1376.2	102.2	103.0	1318.4	102.6	103.5	1280.9	102.2	103.0	1344.6	103.2	103.9	1367.6	103.2	103.8	1287.9	101.8	103.5
1386.5	102.0	103.1	1326.0	102.7	103.5	1292.0	102.0	103.0	1348.5	102.8	104.0	1372.2	102.9	103.8	1301.5	102.3	103.6
1397.1	101.9	103.1	1333.8	102.3	103.5	1304.3	102.6	103.0	1352.5	103.2	104.0	1382.7	102.7	103.9	1307.1	102.9	103.7

	As-built	2012	2013	2014	2015	2016
Avg. Water Surface Slope	0.0053	0.0045	0.0054	0.0051	0.0050	0.0046
Riffle Length	36	28	36	38	49	35
Avg. Riffle Slope	0.0064	0.0057	0.0075	0.0049	0.0041	0.0056
Pool Length	32	35	32	30	30	33

Herman Dairy - Year 5 (2016) Profile Tributary 2 Profile 2/20/16 Perkinson, Jernigan

CIEW	reikilisoli, Jeriliga	П															
	2012		_	2012		_	2013	_		2014	_	_	2015	_	_	2016	_
	As-built Surve			Year 1 Monitoring \			ear 2 Monitoring \			Year 3 Monitoring \			ear 4 Monitoring \S			ear 5 Monitoring \S	
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	
0.0	97.9	98.2	53.5	98.0	98.4	20.0	97.9	98.5	40.8	97.8	98.4	40.8	97.9	98.3	40.8	97.9	98.3
11.2	97.9	98.2	58.4	97.7	98.4	33.8	97.9	98.5	48.9	98.0	98.4	58.1	98.0	98.4	63.0	98.0	98.4
14.9	97.5	98.2	62.3	97.5	98.3	36.0	97.5	98.6	57.4	97.8	98.4	61.7	97.6	98.4	72.0	98.1	98.4
20.1	97.5	98.2	67.7	98.0	98.3	39.4	97.6	98.6	59.6	97.5	98.4	64.3	97.6	98.4	73.4	97.9	98.4
22.2	98.0	98.0	77.5	98.1	98.4	43.6	97.8		66.0	97.6	98.4	67.4	97.9	98.4	75.1	97.8	98.4
34.9	98.0		84.1	97.6	98.4	57.3	97.9	98.6	67.6	98.1	98.4	76.7	98.0	98.4	77.2	98.2	98.4
37.6	97.6	98.1	87.5	97.7	98.4	60.4	97.5	98.6	78.2	98.2	98.5	79.3	97.8	98.4	79.8	97.7	98.4
41.7	97.7	98.1	92.2	97.9	98.4	67.4	97.7	98.6	81.4	97.7	98.5	83.3	97.6	98.3	87.2	97.8	98.4
44.1	97.9		106.8	98.0	98.4	69.4	97.9	98.6	87.5	97.7	98.5	88.5	97.8	98.3	91.2	97.9	98.4
60.6	98.0		110.6	97.8	98.3	80.5	97.9	98.6	90.9	98.0	98.5	93.8	98.0	98.3	106.1	98.0	98.5
62.3	97.4	98.1	114.0	98.1	98.2	84.1	97.7	98.7	108.0	98.2	98.6	104.9	98.1	98.4	108.1	97.9	98.5
69.1	97.8	98.1	137.1	98.1	98.4	87.7	97.6	98.7	110.9	97.9	98.5	108.6	97.8	98.4	109.3	97.9	98.5
71.7	98.0		141.4	97.7	98.4	91.8	97.8	98.6	111.5	97.9	98.5	111.7	97.8	98.4	112.9	98.2	98.5
81.1	98.0		147.7	98.2	98.3	95.9	98.0	98.7	113.6	98.2	98.6	114.1	98.1	98.4	136.1	98.1	98.5
85.9	97.7	98.3	168.6	98.2	98.5	107.8	98.1	98.7	137.1	98.1	98.6	134.0	98.1	98.5	138.1	97.8	98.5
93.8	97.9	98.3	176.9	97.9	98.5	112.1	97.7	98.7	139.6	97.8	98.6	137.6	97.8	98.5	142.9	97.7	98.5
99.3	98.0	98.3	182.9	98.2	98.4	115.2	98.1	98.7	143.6	97.7	98.6	143.2	97.8	98.5	145.8	98.1	98.5
110.8	98.2		209.1	98.5	98.5	136.8	98.1	98.8	146.9	98.2	98.6	147.8	98.1	98.5	169.2	98.2	98.6
113.8	97.9	98.4	223.9	98.4	98.6	142.5	97.6	98.8	169.5	98.2	98.7	166.7	98.2	98.6	171.7	97.9	98.6
116.9	98.2		226.4	98.0	98.6	144.2	97.6	98.8	172.8	97.9	98.7	170.7	98.0	98.5	177.9	97.8	98.6
126.7	98.1	98.4	231.4	98.0	98.6	149.8	98.2	98.8	179.2	97.9	98.7	176.0	97.9	98.5	180.4	98.2	98.6
138.4	98.2		235.9	98.4	98.7	169.3	98.2	98.8	182.2	98.3	98.8	183.4	98.2	98.5	195.9	98.3	98.6
143.4	97.7	98.4	257.1	98.5	98.8	174.4	97.8	98.8	209.6	98.3	98.8	195.1	98.2	98.6	198.7	97.9	98.6
146.8	97.7	98.5	261.1	98.1	98.8	175.4	97.7	98.8	212.1	97.9	98.8	198.5	97.9	98.6	201.1	98.2	98.6
150.8	98.3	, 5.5	267.6	98.5	98.8	179.1	97.8	98.8	213.9	98.3	98.8	202.3	98.2	98.6	221.9	98.4	98.7
150.0	20.5		207.0		20.0		,,,,	20.0	213.5	20.5	20.0	202.5	70.2	20.0	221.7	, , , ,	, o.,

	As-built	2012	2013	2014	2015	2016
Avg. Water Surface Slope	0.0040	0.0041	0.0042	0.0043	0.0044	0.0044
Riffle Length	14	13	13	14	12	15
Avg. Riffle Slope	0.0039	0.0042	0.0061	0.0057	0.0051	0.0058
Pool Length	13	12	11	11	13	11

Tributary 2
Profile
4/6/16
Perkinson, Jernigan

CICW	i cikinson, seringa																
	2012			2012			2013			2014			2015			2016	
	As-built Surve	v	Y	ear 1 Monitoring \S	Survey	,	Year 2 Monitoring \S	urvev	,	ear 3 Monitoring \S	Survey	Y	ear 4 Monitoring \S	Survey	Y	ear 5 Monitoring \S	urvev
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
524.8		99.4	503.3	99.1	99.6	495.4	98.7		498.0	99.0	99.7	1043.6	101.4	101.5	494.7	98.9	99.5
1041.2	100.2	100.8	1041.2	101.5	101.5	1041.2	101.4		1043.6	101.4	101.5	1052.0	101.2	101.6	1043.6	101.4	101.4
1041.8	101.2	101.2	1064.1	101.3	101.6	1055.1	101.2	101.8	1063.5	101.3	101.9	1064.2	101.6	101.9	1063.5	101.3	101.8
1043.5	101.5	101.5	1072.4	101.1	101.7	1068.9	101.3	102.0	1067.5	101.2	102.0	1068.5	101.3	102.0	1065.8	101.0	101.8
1060.7	101.4	101.7	1078.9	101.2	101.7	1071.4	101.0	102.0	1079.6	101.1	102.0	1075.7	101.1	102.0	1075.7	101.0	101.9
1071.8	101.3	101.7	1087.0	101.3	101.7	1076.4	101.1	102.0	1083.8	101.4	102.0	1088.6	101.4	102.1	1079.2	101.0	101.9
1074.4	101.0	101.6	1094.2	101.1	101.7	1079.6	101.3	102.0	1089.6	101.6	102.1	1096.7	101.2	102.1	1082.1	101.3	101.9
1095.6	101.2	101.7	1096.1	101.6	101.9	1086.6	101.3	102.0	1094.1	101.1	102.1	1101.1	101.8	102.1	1094.3	101.5	102.0
1098.7	101.7		1109.7	102.0	102.4	1090.3	101.1	102.0	1096.7	101.1	102.1	1112.4	102.2	102.5	1097.0	101.0	102.0
1110.0	102.2		1115.0	101.5	102.4	1093.7	101.1	102.0	1098.7	101.7	102.1	1117.8	101.6	102.6	1100.3	101.6	102.1
1116.6	101.6	102.3	1120.4	101.8	102.4	1096.8	101.7	102.2	1112.5	102.0	102.5	1123.2	101.8	102.6	1114.8	101.8	102.6
1122.1	101.8	102.3	1125.5	102.1	102.4	1109.1	102.0	102.6	1116.7	101.6	102.5	1129.5	102.1	102.7	1117.5	101.6	102.6
1128.3	102.3		1134.2	102.4	102.8	1114.1	101.6	102.6	1124.5	101.8	102.5	1138.7	102.3	102.7	1123.7	101.5	102.6
1137.3	102.3		1137.5	101.9		1117.1	101.6	102.6	1130.2	102.2	102.6	1141.8	101.9	102.9	1126.7	102.0	102.7
1139.8	102.0	102.6	1144.2	102.0	102.8	1120.4	101.7	102.6	1136.9	102.3	102.8	1147.6	101.8	102.8	1138.0	102.2	102.7
1146.0	102.0	102.6	1145.5	103.0		1126.1	102.2	102.7	1139.6	101.9	102.8	1149.3	103.1	103.1	1140.9	101.8	102.7
1147.4	103.1		1153.5	102.9	103.1	1134.2	102.4	103.0	1146.4	102.0	102.8	1158.6	102.8	103.2	1147.2	101.8	102.7
1156.8	102.8	103.1	1159.3	102.4	103.1	1137.5	101.9	103.0	1147.4	103.0	103.2	1162.8	102.4	103.2	1148.7	103.0	103.1
1160.6	102.4	103.1	1165.4	102.5	103.1	1143.7	101.7	103.0	1158.3	102.8	103.3	1165.7	102.5	103.2	1159.8	102.6	103.2
1167.7	102.5	103.1	1170.1	102.8	103.1	1145.3	103.0	103.3	1161.3	102.4	103.3	1168.7	102.6	103.3	1162.2	102.3	103.2
1172.0	102.9	103.1	1188.5	102.9	103.2	1155.2	102.7	103.4	1168.8	102.6	103.2	1172.4	102.8	103.3	1170.3	102.4	103.2
1191.8	102.9	103.2	1192.5	102.5	103.2	1158.5	102.4	103.4	1172.1	102.9	103.3	1191.6	103.0	103.3	1173.2	102.7	103.3
1195.0	102.4	103.2	1198.5	102.6	103.3	1162.1	102.3	103.4	1190.9	103.0	103.4	1195.5	102.4	103.4	1194.7	102.6	103.4
1201.3	102.6	103.2	1202.8	103.0	103.3	1166.4	102.5	103.4	1195.5	102.5	103.3	1201.5	102.7	103.4	1195.6	102.3	103.4
1205.2	103.0	103.2	1217.5	103.0	103.4	1170.4	102.9	103.4	1201.1	102.6	103.3	1204.5	102.9	103.4	1202.1	102.5	103.4
1220.4	103.1	103.3	1222.8	102.7	103.4	1190.0	103.0	103.5	1204.7	103.0	103.4	1222.2	103.1	103.5	1204.3	102.8	103.4
1225.1	102.8	103.3	1226.2	103.1	103.5	1193.6	102.4	103.5	1222.7	103.1	103.5	1225.8	102.7	103.5	1223.8	102.8	103.5

	As-built	2012	2013	2014	2015	2016
Avg. Water Surface Slope	0.0040	0.0041	0.0042	0.0043	0.0044	0.0044
Riffle Length	14	13	13	14	12	15
Avg. Riffle Slope	0.0039	0.0042	0.0061	0.0057	0.0051	0.0058
Pool Length	13	12	11	11	13	11

Project Name Herman Dairy - Year 5 (2016) Profile Reach Tributary 3

Feature Profile
Date 2/20/16
Crew Perkinson, Jernigan

CICH	i cikinson, seringe																
	2012			2012			2013			2014			2015			2016	
	As-built Survey		Year 1 Monitoring \Survey		Year 2 Monitoring \Survey		Year 3 Monitoring \Survey		Year 4 Monitoring \Survey		Year 5 Monitoring \Survey						
Station		Water Elevation	Station		Water Elevation	Station	Bed Elevation		Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station		Water Elevation
0.0	94.6		82.0	99.6		89.0	99.7	99.9	69.8	99.4	99.7	83.8	99.6	100.0	69.0	99.5	99.9
22.2	97.1		85.1	99.1		100.1	99.7	99.9	82.0	99.6	99.9	116.3	99.7	100.1	77.7	99.6	100.0
42.1	98.7		86.6	99.2		116.2	99.7	100.0	84.0	99.1	99.9	121.3	99.2	100.1	81.4	99.2	99.9
69.9	99.5		89.0	99.7		118.7	99.0	100.0	87.2	99.3	99.9	123.6	99.3	100.1	84.9	99.2	99.9
82.7	99.6		116.0	99.6		122.8	99.2	100.0	89.0	99.7	99.9	125.8	99.8	100.1	88.1	99.5	100.1
85.8	99.2	99.9	118.9	99.0		124.9	99.7	99.9	116.3	99.5	100.0	140.0	99.9	100.1	113.4	99.6	100.1
89.2	99.7	99.9	122.4	99.1		138.9	99.7	100.0	121.0	99.1	100.1	144.6	99.1	100.1	116.2	99.2	100.1
115.5	99.6	99.9	125.1	99.6		142.8	99.0	100.0	125.1	99.6	100.0	152.8	99.3	100.2	119.9	99.1	100.1
119.0	99.0	99.9	138.8	99.7		146.9	98.9	100.0	139.9	99.6	100.1	155.8	99.7	100.1	122.7	99.7	100.1
122.7	99.1	99.9	143.8	99.0		153.0	99.1	100.0	145.4	99.0	100.1	172.3	99.7	100.1	136.6		100.2
125.8	99.6	99.9	151.9	99.1		155.7	99.6	100.0	150.6	99.1	100.1	177.0	99.2	100.2	139.6	99.2	100.1
138.2	99.6	99.9	158.4	99.6		163.8	99.6	100.0	156.5	99.7	100.1	183.1	99.2	100.1	148.8	99.1	100.2
142.3	99.1	99.9	171.8	99.6		171.9	99.5	100.0	172.5	99.7	100.1	185.9	99.7	100.1	153.0	99.7	100.2
146.4	99.0	99.9	176.8	99.0		178.1	98.9	100.0	177.9	99.0	100.1	197.7	99.6	100.0	168.5	99.7	100.2
151.0	99.1	99.9	182.1	99.1		184.5	99.0	100.0	181.6	99.0	100.1	201.1	99.2	100.1	172.6	99.1	100.2
156.1	99.6	99.9	185.4	99.5		187.8	99.5	100.0	185.6	99.6	100.1	206.1	99.1	100.0	180.0	99.0	100.2
170.2	99.6	99.9	197.4	99.4		198.4	99.6	100.0	195.7	99.5	100.2	209.5	99.7	100.1	182.9	99.5	100.2
175.3	99.0	99.9	199.7	99.0		203.3	98.9	100.0	201.2	99.0	100.1	216.9	99.6	100.0	193.3	99.6	100.2
182.1	99.1	99.9	204.8	98.8		208.4	98.9	100.0	205.5	98.9	100.1	219.4	99.1	100.0	198.2	99.0	100.2
185.9	99.6	99.9	209.1	99.6		212.7	99.7	100.0	210.5	99.7	100.1	223.9	99.3	100.0	204.7	99.0	100.2
196.0	99.6	99.9	215.3	99.6		217.1	99.7	100.0	215.1	99.7	100.1	226.4	99.5	100.1	212.0	99.7	100.2
199.5	99.0	99.9	218.7	99.0		220.5	99.1	100.0	220.4	99.1	100.1	236.1	99.9	100.1	216.3	99.0	100.2
205.7	98.8	99.9	223.9	99.1		226.5	99.1	100.0	227.2	99.6	100.2	238.8	99.3	100.1	221.0	99.2	100.2
208.9	99.6		227.8	99.7		229.2	99.7	100.0	235.4	99.7	100.1	246.4	99.4	100.1	225.5	99.5	100.2
214.2	99.8	100.0	234.9	99.8		237.8	99.6	100.1	238.8	99.2	100.1	249.9	99.6	100.1	233.0	99.8	100.2
217.5	99.0	100 0	239.4	99.1		240.6	99 1	100 1	245.3	99 2	100.1	258.2	99 7	100.1	236.3	99 2	100.2

	As-built	2012	2013	2014	2015	2016
Avg. Water Surface Slope	0.0012	NA	0.0015	0.0015	0.0013	0.0018
Riffle Length	11	10	11	11	11	10
Avg. Riffle Slope	0.0022	NA	0.0042	0.0040	0.0054	0.0038
Pool Length	13	13	13	13	13	14

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 1, Pool)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	99.49
8.84	99.74
14.44	99.80
17.92	99.82
19.00	99.76
20.16	99.60
21.15	99.24
21.83	98.74
22.71	98.31
23.79	98.05
24.66	98.14
25.45	98.10
26.54	98.20
27.74	98.38
28.90	98.29
29.67	98.92
30.8	99.14
32.05	99.44
33.06	99.48
33.86	99.55
35.30	99.40
38.53	99.58
42.6	99.67
45.5	99.7
48.9	99.7
51.4	99.7

SUMMARY DATA	
Bankfull Elevation:	99.7
Bankfull Cross-Sectional Area:	14.2
Bankfull Width:	26.7
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	0.5
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Stream Type	Е

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 2, Pool)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

~ .	
Station	Elevation
0.00	100.12
3.23	100.29
12.69	100.39
18.03	100.41
22.52	100.02
24.23	100.11
25.34	100.00
26.28	99.68
26.89	99.19
27.44	98.97
28.62	98.99
29.53	99.03
31.02	99.08
31.42	99.54
32.3	100.08
33.4	100.27
35.6	100.33
37.6	100.49
41.7	100.46
47.6	100.46
50.6	100.59
54.4	100.75

SUMMARY DATA	
Bankfull Elevation:	100.4
Bankfull Cross-Sectional Area:	9.3
Bankfull Width:	17.5
Flood Prone Area Elevation:	101.8
Flood Prone Width:	>80
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.5
W / D Ratio:	32.9
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 3, Riffle)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
1.20	103.06
10.27	102.91
12.68	103.11
15.57	103.12
17.87	103.14
20.03	103.18
21.50	103.27
22.30	103.31
23.50	103.06
24.12	102.77
24.72	102.30
25.48	101.98
25.96	101.61
27.13	101.56
28.0	101.59
28.9	101.71
29.8	101.68
30.7	101.77
31.2	102.12
32.0	102.59
33.3	103.17
34.8	103.30
36.2	103.24
39.5	103.26
41.9	103.16
44.2	103.08
48.3	102.78
51.52	102.99
54.31	102.74

SUMMARY DATA	
Bankfull Elevation:	102.9
Bankfull Cross-Sectional Area:	8.3
Bankfull Width:	8.9
Flood Prone Area Elevation:	104.2
Flood Prone Width:	>80
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.9
W / D Ratio:	9.5
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 4, Pool)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	103.1
4.6	103.2
10.8	103.4
14.5	103.5
16.3	103.5
17.8	103.5
18.9	103.4
19.9	102.8
21.0	102.7
21.5	102.2
22.6	102.1
23.3	102.1
25.0	101.8
25.6	101.8
26.3	101.64
27.6	102.89
28.5	103.46
30.3	103.23
31.9	103.11
33.0	103.12
36.5	103.09
38.9	103.09
44.5	102.94

SUMMARY DATA	•
Bankfull Elevation:	103.5
Bankfull Cross-Sectional Area:	10.6
Bankfull Width:	6.7
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	1.6
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Stream Type E

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 5, Riffle)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Fl4:
	Elevation
0.0	103.7
8.1	104.0
13.8	104.2
17.7	104.4
20.0	104.5
21.8	104.5
22.8	103.9
23.9	103.3
24.6	103.1
25.3	102.9
26.3	102.7
27.2	102.7
27.9	102.9
28.6	102.96
29.6	103.08
30.6	104.02
31.4	104.52
34.7	104.51
39.5	104.24
46.2	103.99
52.2	104.12
58.7	104.28

SUMMARY DATA	
Bankfull Elevation:	104.3
Bankfull Cross-Sectional Area:	9.5
Bankfull Width:	8.8
Flood Prone Area Elevation:	105.9
Flood Prone Width:	>80
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	1.1
W / D Ratio:	8.2
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Stream Type	E/C
-------------	-----

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 6, Pool)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	103.8
7.4	103.7
12.8	104.3
14.6	104.3
16.5	104.5
17.4	104.6
18.6	104.3
19.2	103.0
20.2	102.5
21.1	102.5
21.8	102.7
22.7	102.7
23.5	102.9
25.1	103.1
26.1	103.9
27.9	104.4
29.7	104.5
33.7	104.3
35.5	104.5
37.4	104.4
39.7	104.5
41.1	104.3
42.4	104.2
43.5	104.3
45.5	104.3

SUMMARY DATA	
Bankfull Elevation:	104.3
Bankfull Cross-Sectional Area:	10.5
Bankfull Width:	8.8
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	1.2
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Stream Type E/C	
-----------------	--

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 7, Riffle)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
-0.5	104.8
7.0	104.9
14.2	104.9
16.7	105.1
18.8	105.5
20.0	105.3
22.1	105.3
23.1	103.6
23.9	103.4
24.9	103.3
26.3	103.3
27.3	103.3
28.5	103.3
29.2	103.52
30.2	104.45
31.6	104.84
32.9	104.90
34.3	105.10
36.0	105.06
38.0	104.98
41.4	104.88
46.5	105.00
50.4	105.21
51.1	105.04
53.6	105.18

SUMMARY DATA	
Bankfull Elevation:	104.8
Bankfull Cross-Sectional Area:	10.6
Bankfull Width:	9.2
Flood Prone Area Elevation:	106.4
Flood Prone Width:	>80
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	1.2
W / D Ratio:	8.0
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 8, Pool)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Elevation
105.5
105.5
105.8
105.8
105.5
104.9
103.9
103.7
103.5
103.3
103.3
103.4
103.7
104.48
105.25
105.66
105.77
105.63
105.56
105.79

SUMMARY DATA	
Bankfull Elevation:	105.5
Bankfull Cross-Sectional Area:	13.4
Bankfull Width:	10.0
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	2.2
Mean Depth at Bankfull:	1.3
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 9, Pool)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
-0.3	106.6
2.8	106.5
5.9	106.3
7.7	106.2
9.3	106.0
9.9	106.4
10.5	106.5
11.3	106.4
12.1	106.1
12.6	105.7
13.3	104.9
14.0	104.6
15.3	104.6
16.0	104.46
16.6	104.38
16.9	104.56
17.5	104.99
18.0	105.47
18.8	105.89
19.7	106.33
21.1	106.74
23.0	106.93
25.5	106.71
29.4	106.62

SUMMARY DATA	
Bankfull Elevation:	106.5
Bankfull Cross-Sectional Area:	12.4
Bankfull Width:	16.9
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	2.1
Mean Depth at Bankfull:	0.7
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 10, Riffle)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	106.7
4.7	106.9
7.1	106.9
9.8	106.4
11.4	105.5
11.7	105.3
12.8	105.2
14.0	105.1
15.7	105.2
16.3	106.0
16.8	106.5
17.8	106.9
18.8	107.1
20.2	106.94
22.0	106.63
25.3	106.95
28.9	106.91
32.6	106.87

SUMMARY DATA	
Bankfull Elevation:	106.6
Bankfull Cross-Sectional Area:	8.3
Bankfull Width:	8.5
Flood Prone Area Elevation:	108.1
Flood Prone Width:	>80
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	1.0
W / D Ratio:	8.7
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Stream Type E/C	
-----------------	--

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 11, Riffle)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	98.6
2.9	98.5
4.3	98.4
5.2	98.4
6.5	98.1
7.3	98.1
8.1	98.0
9.2	98.2
10.0	98.1
11.1	98.2
12.3	98.5
13.6	98.5
15.1	98.6
17.0	98.49
19.6	98.66

SUMMARY DATA	•
Bankfull Elevation:	98.4
Bankfull Cross-Sectional Area:	1.5
Bankfull Width:	6.8
Flood Prone Area Elevation:	98.8
Flood Prone Width:	>80
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	30.8
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 12, Pool)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	98.9
3.1	98.8
7.1	98.8
8.2	98.7
8.5	98.5
9.5	98.1
10.1	98.1
10.6	98.1
11.4	98.3
12.1	98.5
12.8	98.6
13.9	98.8
16.5	99.0
19.3	98.96
18.2	98.90
19.2	98.95

SUMMARY DATA	
Bankfull Elevation:	98.8
Bankfull Cross-Sectional Area:	2.2
Bankfull Width:	6.3
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.3
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	_

Stream Type	E/C

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 13, Riffle)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	99.2
2.4	99.2
6.8	99.3
7.5	99.2
8.2	98.9
8.7	99.1
9.9	99.0
11.3	99.1
12.5	99.0
13.4	99.2
14.9	99.4
17.2	99.4
19.7	99.4

SUMMARY DATA	
Bankfull Elevation:	99.3
Bankfull Cross-Sectional Area:	1.7
Bankfull Width:	7.8
Flood Prone Area Elevation:	99.7
Flood Prone Width:	>80
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	35.8
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Stream Type	E/C

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 14, Pool)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Elevation
103.1
103.3
103.3
103.2
102.8
102.6
102.4
102.4
102.6
102.6
102.8
102.8
102.9
103.14
103.16
103.22
103.28
103.16

SUMMARY DATA	
Bankfull Elevation:	103.1
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	5.7
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Stream Type E/C	
-----------------	--

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 15, Riffle)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	104.1
3.4	104.2
5.8	104.2
6.3	104.1
7.2	104.0
7.6	103.7
8.4	103.7
8.9	103.6
9.5	103.7
10.2	103.7
11.1	103.8
11.8	104.1
12.6	104.1
14.3	104.19
16.9	104.17
19.1	104.17

SUMMARY DATA	•
Bankfull Elevation:	104.1
Bankfull Cross-Sectional Area:	1.8
Bankfull Width:	7.0
Flood Prone Area Elevation:	104.6
Flood Prone Width:	>80
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	27.2
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Stream Type	E/C

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 16, Pool)
Drainage Area (sq mi):	1.01
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
-0.3	104.6
2.7	104.5
5.4	104.4
6.4	104.2
7.2	104.3
8.1	104.0
8.4	103.9
8.8	103.7
9.4	103.5
9.9	103.9
10.4	104.4
10.7	104.4
12.1	104.6
14.2	104.48
16.8	104.57
19.0	104.80

SUMMARY DATA	
Bankfull Elevation:	104.4
Bankfull Cross-Sectional Area:	1.7
Bankfull Width:	5.3
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.3
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Stream Type	E/C

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 3 (XS - 17, Riffle)
Drainage Area (sq mi):	0.06
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	100.2
4.3	100.0
8.5	100.2
9.2	100.0
10.1	99.7
10.9	99.7
12.3	99.6
13.5	99.5
14.7	99.6
15.8	99.5
16.4	99.7
17.2	100.0
18.3	100.1
20.1	100.12
23.4	100.01
26.9	100.00

SUMMARY DATA	
Bankfull Elevation:	100.0
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	8.0
Flood Prone Area Elevation:	100.5
Flood Prone Width:	>80
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.4
W / D Ratio:	22.9
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 3 (XS - 18, Pool)
Drainage Area (sq mi):	0.06
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Elevation
100.6
100.7
100.8
100.6
100.3
99.7
99.5
99.6
99.9
100.2
100.5
100.4
100.6
100.66
100.58

SUMMARY DATA	
Bankfull Elevation:	100.5
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	5.9
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 3 (XS - 19, Pool)
Drainage Area (sq mi):	0.06
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	100.4
4.6	100.4
7.9	
	100.4
9.9	100.5
10.8	100.2
11.8	100.0
12.5	99.5
13.2	99.4
14.4	99.6
15.3	99.9
16.2	100.2
17.3	100.3
18.4	100.4
20.1	100.68
22.3	100.76
25.8	100.71
	1

SUMMARY DATA	
Bankfull Elevation:	100.4
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	7.2
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.5
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Stream Type	E/C

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 3 (XS - 20, Riffle)
Drainage Area (sq mi):	0.06
Date:	2/20/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	100.7
3.7	100.8
6.5	100.8
7.2	100.7
8.0	100.4
8.8	100.3
9.6	100.3
10.4	100.2
11.0	100.3
12.1	100.1
13.0	100.4
13.8	100.8
14.9	100.8
16.8	100.79
19.3	100.98

SUMMARY DATA	
Bankfull Elevation:	100.8
Bankfull Cross-Sectional Area:	3.1
Bankfull Width:	7.5
Flood Prone Area Elevation:	101.5
Flood Prone Width:	>80
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	18.1
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Project Name: Herman Dairy UT1						
Cross-Section: 2						
Feature: Riffle						
D 1.1				2016		
Description	Material	Size (mm)	Total #	Item %	Cum %	
Silt/Clay	silt/clay	0.062	21	42%	36%	
	very fine sand	0.125	5	10%	44%	
	fine sand	0.250	7	14%	48%	
Sand	medium sand	0.50	3	6%	48%	
	coarse sand	1.00	6	12%	56%	
	very coarse sand	2.0	3	6%	60%	
	very fine gravel	4.0	1	2%	68%	
	fine gravel	5.7	3	6%	72%	
	fine gravel	8.0	0	0%	84%	
	medium gravel	11.3	1	2%	92%	
Gravel	medium gravel	16.0	0	0%	92%	
	course gravel	22.3	0	0%	96%	
	course gravel	32.0	0	0%	96%	
	very coarse gravel	45	0	0%	96%	
	very coarse gravel	64	0	0%	100%	
	small cobble	90	0	0%	100%	
Cobble	medium cobble	128	0	0%	100%	
Copple	large cobble	180	0	0%	100%	
	very large cobble	256	0	0%	100%	
	small boulder	362	0	0%	100%	
Boulder	small boulder	512	0	0%	100%	
Doninei	medium boulder	1024	0	0%	100%	
	large boulder	2048	0	0%	100%	
Bedrock	bedrock	40096	0	0%	100%	
TOTAL % of	TOTAL % of whole count			100%	100%	

Summary Data			
D50	0.1		
D84	1		
D95	5		

Project Name: Herman Dairy UT1							
Cross-Section: 3							
Feature: Riffle							
D				2016			
Description	Material	Size (mm)	Total #	Item %	Cum %		
Silt/Clay	silt/clay	0.062		18%	33%		
	very fine sand	0.125	6	12%	43%		
<i>a</i> ,	fine sand	0.250	14	28%	48%		
Sand	medium sand	0.50	5	10%	52%		
	coarse sand	1.00	8	16%	62%		
	very coarse sand	2.0	2	4%	67%		
	very fine gravel	4.0	1	2%	67%		
	fine gravel	5.7	2	4%	67%		
	fine gravel	8.0	3	6%	71%		
	medium gravel	11.3	0	0%	76%		
Gravel	medium gravel	16.0	0	0%	86%		
	course gravel	22.3	0	0%	90%		
	course gravel	32.0	0	0%	95%		
	very coarse gravel	45	0	0%	95%		
	very coarse gravel	64	0	0%	95%		
	small cobble	90	0	0%	100%		
Cobble	medium cobble	128	0	0%	100%		
Cobble	large cobble	180	0	0%	100%		
	very large cobble	256	0	0%	100%		
	small boulder	362	0	0%	100%		
Boulder	small boulder	512	0	0%	100%		
boulder	medium boulder	1024	0	0%	100%		
	large boulder	2048	0	0%	100%		
Bedrock	bedrock	40096	0	0%	100%		
TOTAL % of	whole count		50	100%	100%		

Summary Data			
D50	0.2		
D84	1		
D95	6		

	Project Name: Herman Dairy UT1						
	Cross-Section: 10						
Feature: Riffle							
Description	Description Material Size (mm)			Total # Item % Cum %			
Silt/Clay	silt/clay	0.062	10111 #	19%	24%		
Sitteria	very fine sand	0.125	2	4%	32%		
	fine sand	0.123	4	8%	44%		
Sand	medium sand	0.50	6	11%	48%		
Sunu	coarse sand	1.00	4	8%	56%		
	very coarse sand	2.0	2	4%	60%		
	very fine gravel	4.0	1	2%	68%		
	fine gravel	5.7	2	4%	72%		
	fine gravel	8.0	4	8%	80%		
	medium gravel	11.3	5	9%	80%		
Gravel	medium gravel	16.0	3	6%	84%		
	course gravel	22.3	2	4%	96%		
	course gravel	32.0	1	2%	96%		
	very coarse gravel	45	3	6%	96%		
	very coarse gravel	64	1	2%	100%		
	small cobble	90	1	2%	100%		
Cobble	medium cobble	128	2	4%	100%		
Copple	large cobble	180	0	0%	100%		
	very large cobble	256	0	0%	100%		
	small boulder	362	0	0%	100%		
Boulder	small boulder	512	0	0%	100%		
Doulder	medium boulder	1024	0	0%	100%		
	large boulder	2048	0	0%	100%		
Bedrock	bedrock	40096	0	0%	100%		
TOTAL % of	whole count		53	100%	100%		

Summary Data				
D50	1.2			
D84	20			
D95	72			

	Project Name: Herman Dairy UT2						
	Cross-Section: 13						
Feature: Riffle							
Description	Description Material Size (mm)			Total # Item % Cum %			
Silt/Clay	silt/clay	0.062	3	5%	68%		
Site City	very fine sand	0.125	4	7%	72%		
	fine sand	0.250	2	3%	84%		
Sand	medium sand	0.50	0	0%	84%		
	coarse sand	1.00	0	0%	88%		
	very coarse sand	2.0	0	0%	92%		
	very fine gravel	4.0	0	0%	100%		
	fine gravel	5.7	2	3%	100%		
	fine gravel	8.0	1	2%	100%		
	medium gravel	11.3	3	5%	100%		
Gravel	medium gravel	16.0	6	10%	100%		
	course gravel	22.3	9	15%	100%		
	course gravel	32.0	14	24%	100%		
	very coarse gravel	45	11	19%	100%		
	very coarse gravel	64	3	5%	100%		
	small cobble	90	1	2%	100%		
Cobble	medium cobble	128	0	0%	100%		
Copple	large cobble	180	0	0%	100%		
	very large cobble	256	0	0%	100%		
	small boulder	362	0	0%	100%		
Boulder	small boulder	512	0	0%	100%		
Douluci	medium boulder	1024	0	0%	100%		
	large boulder	2048	0	0%	100%		
Bedrock	bedrock	40096	0	0%	100%		
TOTAL % of	whole count		59	100%	100%		

Summary Data		
D50	21.6	
D84	38	
D95	51	

	Project Name: Herman Dairy UT2							
	Cross-Section: 15							
	Feature: Riffle							
B 1.1					2016			
Description	Material	Size (mm)	Total #	Item %	Cum %			
Silt/Clay	silt/clay	0.062	3	6%	68%			
	very fine sand	0.125	2	4%	72%			
	fine sand	0.250	1	2%	84%			
Sand	medium sand	0.50	0	0%	84%			
	coarse sand	1.00	2	4%	88%			
	very coarse sand	2.0	1	2%	92%			
	very fine gravel	4.0	0	0%	100%			
	fine gravel	5.7	1	2%	100%			
	fine gravel	8.0	1	2%	100%			
	medium gravel	11.3	1	2%	100%			
Gravel	medium gravel	16.0	9	17%	100%			
	course gravel	22.3	8	15%	100%			
	course gravel	32.0	6	11%	100%			
	very coarse gravel	45	12	22%	100%			
	very coarse gravel	64	4	7%	100%			
	small cobble	90	2	4%	100%			
Cobble	medium cobble	128	1	2%	100%			
Copple	large cobble	180	0	0%	100%			
	very large cobble	256	0	0%	100%			
	small boulder	362	0	0%	100%			
Boulder	small boulder	512	0	0%	100%			
Doulder	medium boulder	1024	0	0%	100%			
	large boulder	2048	0	0%	100%			
Bedrock	bedrock	40096	0	0%	100%			
TOTAL % of	whole count		54	100%	100%			

Summary Data		
D50	20.3	
D84	43	
D95	67	

	Project Name: Herman Dairy UT3							
	Cross-Section: 17							
	Feature: Riffle							
					2016			
Description	Material	Size (mm)	Total #	Item %	Cum %			
Silt/Clay	silt/clay	0.062	5	9%	68%			
	very fine sand	0.125	3	6%	72%			
	fine sand	0.250	4	7%	84%			
Sand	medium sand	0.50	2	4%	84%			
	coarse sand	1.00	1	2%	88%			
	very coarse sand	2.0	0	0%	92%			
	very fine gravel	4.0	1	2%	100%			
	fine gravel	5.7	1	2%	100%			
	fine gravel	8.0	2	4%	100%			
	medium gravel	11.3	1	2%	100%			
Gravel	medium gravel	16.0	2	4%	100%			
	course gravel	22.3	7	13%	100%			
	course gravel	32.0	12	22%	100%			
	very coarse gravel	45	4	7%	100%			
	very coarse gravel	64	8	15%	100%			
	small cobble	90	1	2%	100%			
Cobble	medium cobble	128	0	0%	100%			
Copple	large cobble	180	0	0%	100%			
	very large cobble	256	0	0%	100%			
	small boulder	362	0	0%	100%			
Boulder	small boulder	512	0	0%	100%			
Doulder	medium boulder	1024	0	0%	100%			
	large boulder	2048	0	0%	100%			
Bedrock	bedrock	40096	0	0%	100%			
TOTAL % of	whole count		54	100%	100%			

Summary Data		
D50	20.1	
D84	46	
D95	59	

Appendix E. Hydrology Data

Table 12. Wetland Hydrology Criteria Attainment 2016 Groundwater Gauge Graphs Figure E1. Annual Climatic Data vs. 30-year Historic Data

Table 12. Wetland Hydrology Criteria Attainment

	Success Criter	ia Achieved/Max (Consecutive Days	During Growing S	eason
Gauge			Percentage)	9 9 -	
	Year 1 (2012)	Year 2 (2013)	Year 3 (2014)	Year 4 (2015)	Year 5 (2016)
1	Yes/38 days	Yes/235 days	Yes/235 days	Yes/235 days	Yes/235 days
1	(16.2 percent)	(100 percent)	(100 percent)	(100 percent)	(100 percent)
2	Yes/101days	Yes/235 days	Yes/39 days	Yes/235 days	Yes/235 days
2	(43 percent)	(100 percent)	(16.6 percent)	(100 percent)	(100 percent)
3	Yes/226 days	Yes/235 days	Yes/130 days	Yes/89 days	Yes/235 days
3	(96.2 percent)	(100 percent)	(55.3 percent)	(37.8 percent)	(100 percent)
4	Yes/226 days	Yes/46 days	Yes/235 days	Yes/235 days	Yes/235 days
4	(96.2 percent)	(19.6 percent)	(100 percent)	(100 percent)	(100 percent)
5	Yes/87 days	Yes/179 days	Yes/108 days	Yes/52 days	Yes/70 days*
3	(37.0 percent)	(76.2 percent)	(46 percent)	(22 percent)	(29.8 percent)
6	Yes/100 days	Yes/235 days	Yes/79 days	Yes/49 days	Yes/177 days
0	(42.5 percent)	(100 percent)	(33.6 percent)	(20.8 percent)	(75.3 percent)
7	Yes/235 days	Yes/235days	Yes/117 days	Yes/115 days	Yes/162 days
/	(100 percent)	(100 percent)	(49.8 percent)	(48.9 percent)	(68.9 percent)
8	Yes/178 days	Yes/193 days	Yes/119 days	Yes/81 days	Yes/163 days
8	(75.7 percent)	(82.1 percent)	(50.6 percent)	(34.4 percent)	(69.4 percent)
9	Yes/29 days	Yes/104 days	Yes/100 days	Yes/49 days	Yes/168 days*
9	(12.3 percent)	(44.2 percent)	(42.6 percent)	(20.8 percent)	(71.5 percent)
10	Yes/102 days	Yes/235 days	Yes/235 days	Yes/167 days	Yes/235 days
10	(43.4 percent)	(100 percent)	(100 percent)	(71 percent)	(100 percent)
Ref	Yes/148 days	Yes/235 days	Yes/235 days	Yes/235 days	Yes/208 days*
Kei	(62.9 percent)	(100 percent)	(100 percent)	(100 percent)	(88.5 percent)

^{*}These gauges malfunctioned during the growing season, resulting in a loss of data. However, all three met success criteria prior to the malfunction.

Appendix F. Benthic Data

2016 Benthic Data Lab Results 2016 Habitat Assessment Field Datasheets

SPECIES	T.V.	F.F.G.	PA48768	PA48769
			UT-1	UT-2
MOLLUSCA				
Bivalvia				
Veneroida				
Sphaeriidae		FC		
Pisidium sp.	6.6	FC		1
ANNELIDA				
Clitellata				
Oligochaeta		CG		
Tubificida				
Naididae				
Tubificinae w.h.c.		CG		1
ARTHROPODA				
Arachnoidea				
Acariformes				1
Crustacea				
Ostracoda				5
Insecta				
Collembola				1
Odonata		_		
Gomphidae		Р		
Gomphus (Gomphus) sp.	5.9	Р	1	
Megaloptera				
Corydalidae		Р		
Chauliodes sp.	_	Р		1
Sialidae		Р	2	
Sialis sp.	7	Р	2	
Coleoptera				
Dryopidae	44	90	1	
Helichus sp.	4.1	SC P	1	
Dytiscidae Prodaticus bimarginatus	-	F		1
Hydrophilidae		Р		1
Helocombus sp.		Г	5	
Noteridae			J	
Hydrocanthus sp.				1
Scirtidae		SC		
Scirtes sp.			1	27
Diptera				<u> </u>
Chironomidae				
Chironomus sp.	9.3	CG	10	
Conchapelopia sp.	8.4	Р	5	
Polypedilum aviceps	3.6	SH	1	
Polypedilum illinoense gp.	8.7	SH	6	
Stictochironomus devinctus	5.4	CG	7	

SPECIES	T.V.	F.F.G.	PA48768	PA48769
			UT-1	UT-2
Tanytarsus sp.	6.6	FC	5	
Culicidae		FC		10
Ptychopteridae				
Bittacomorpha clavipes				77
Ptychoptera sp.				1
Simuliidae		FC		
Simulium venustum complex	7.3		1	
Simulium vittatum	9.1		4	
Tipulidae		SH	3	
TOTAL NO. OF ORGANISMS			52	127
TOTAL NO. OF TAXA			14	12
EPT TAXA			0	0
NCBI-Assigned Values			7.85	6.60

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an

Herman Dairy 4T-01

Biological Assessment Unit, DWQ

TOTAL SCORE

stream conditions. To description which best select an intermediate	arting above the bridge pool and the road right-of-way. The segment which is assessed should represent average perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the tits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, score. A final habitat score is determined by adding the results from the different metrics.
Stream UT. Mull.	Location/road: Three fy-185 (Road Name)County Alexander
Date	CC+03050/0112030 Basin Catenba Subbasin 03-08-02
	Type of Study: Fish Benthos Basinwide Special Study (Describe) Liparia Butter Restor
	Longitude 8 . 2069 Ecoregion: □ MT □ P □ Slate Belt □ Triassic Basin
Water Quality: Tem	perature0C DOmg/l Conductivity (corr.)µS/cm pH
you estimate driving	ration: Visible land use refers to immediate area that you can see from sampling location - include what thru the watershed in watershed land use.
Visible Land Use:%Fallow Fields	%Forest %Residential 40 %Active Pasture 40 % Active Crops %Commercial %Industrial 20 %Other - Describe:
Watershed land use :	□Porest □Agriculture □Urban □Animal operations upstream
	am Channel (at top of bank) Stream Depth: (m) Avg Max Width variable □ Large river >25m wide ecpest part of riffle to top of bank-first flat surface you stand on): (m)
Bank Angle: indicate slope is away ☐ Channelized Ditch	or □ NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° from channel. NA if bank is too low for bank angle to matter.)
☐ Deeply incised-stee ☐ Recent overbank d ☐ Excessive periphy Manmade Stabilization Flow conditions: ☐ Turbidity: ☐ Clear	p, straight banks Both banks undercut at bend Channel filled in with sediment eposits Bar development Buried structures Exposed bedrock ton growth Heavy filamentous algae growth Green tinge Sewage smell on: N Y: Rip-rap, cement, gabions Sediment/grade-control structure Berm/levee High Phormal Low Slightly Turbid Turbid Tannic Milky Colored (from dyes) for Wetlands Restoration Project?? YES NO Details
Channel Flow Status Useful espect A. Water rea B. Water fill C. Water fill D. Root mat	
Weather Conditions	Photos: □N □Y □ Digital □35mm
Remarks:	

I, Channel Modification					G
A. channel natural, frequent bends	lineday and	Id be old)			Ø
B. channel natural, infrequent bends (channel					
C. some channelization present				*************	
D. more extensive channelization, >40% of	stream disru	pted			2
E. no bends, completely channelized or rip r	rapped or gal	bioned, etc			0
☐ Evidence of dredging ☐ Evidence of desnagging=no la	arge woody o	debris in stream	Banks of unifo	rm shape/	height
Remarks Gt-eum 1974				S	ubtotal 7
II. Instream Habitat: Consider the percentage of the rea	ach that is fa	vorable for bentho	os colonization o	r fish cove	r. If >70% of the
reach is rocks, 1 type is present, circle the score of 17. De begun to decay (not piles of leaves in pool areas). Mark a	as Rare, Con	nmon, or Abundar	nt.	ате раско	i together and have
RocksMacrophytesSticks and leafpace	cksSn	ags and logs 👱	Undercut ban	ks or root	mats
AMOUNT OF REACH FAVO	ORABLE F	OR COLONIZA	TION OR COV	/ER	
1 Stand of Contract Annual Actual	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	(16)	12	8	
3 types present		15	11	7	
2 types present		14	10	6	
1 type present		13	9	5	
No types present			7		11
☐ No woody vegetation in riparian zone Remarks	0 7				Subtotal 0
10 Woody Vegetation in ripartan zone					
III. Bottom Substrate (silt, sand, detritus, gravel, cobb	ole, boulder	Look at entire re	each for substrate	e scoring,	but only look at riff
for embeddedness, and use rocks from all parts of riffle-le	ook for "muc	d line" or difficult	y extracting rock	CS.	
A. substrate with good mix of gravel, cobble	and boulder	rs			Score
1. embeddedness <20% (very little sand	d usually on	ly behind large bo	oulders)		15
2. embeddedness 20-40%	a, assuming on	ay seame im ge or			12
3. embeddedness 40-80%					8
4. embeddedness >80%					3
		***************************************	***************************************		3
B. substrate gravel and cobble 1. embeddedness <20%					14
2. embeddedness 20-40%				ersterne.	11
2. embeddedness 20-40%					6
					2
4. embeddedness >80%				*********	2
C. substrate mostly gravel 1. embeddedness <50%					8
					4
2. embeddedness >50%				*********	
D. substrate homogeneous					2
 substrate nearly all bedrock 	***************************************				M
2. substrate nearly all sand			***************************************		G/
3. substrate nearly all detritus					2
 substrate nearly all silt/ clay 					1.3
Remarks				S	Subtotal
IV. Pool Variety Pools are areas of deeper than avera associated with pools are always slow. Pools may take the	ge maximum he form of "p	n depths with little bocket water", sma	or no surface tu all pools behind	rbulence. boulders o	Water velocities r obstructions, in
large high gradient streams, or side eddies. A. Pools present	47				Score
 Pools Frequent (>30% of 200m area surveyed a. variety of pool sizes 	4)				(10)
b. pools about the same size (indicates	pools fillies	in)			8
2. Pools Infrequent (<30% of the 200m area sur		, шу			Ģ.
a. variety of pool sizes	-7/				6
b. pools about the same size		A2-11-40-310-003-003-003-01-4			4
B. Pools absent					0 10
D. FUUIS ADSCIIL.					1/1
					btotal 10
□ Pool bottom boulder cobble-bard □ Rottom conduct				Su	
☐ Pool bottom boulder-cobble=hard ☐ Bottom sandy-s Remarks				Su	

V. Riffle Habitats		
Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequer		Infrequent
Scor	_	
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream	12	
B. riffle as wide as stream but riffle length is not 2X stream width	7	
C. riffle not as wide as stream and riffle length is not 2X stream width	3	
D. riffles absent0		11-
Channel Slope: ☐Typical for area ☐Steep=fast flow ☐Low=like a coastal stream	Sub	ototal_16
VI. Bank Stability and Vegetation		
FACE UPSTREAM	Left Bank	Rt. Bank
TACLOTOTICAN	Score	Score
A. Banks stable	_	_
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosi	on. (7)	(I)
B. Erosion areas present	0	•
1. diverse trees, shrubs, grass; plants healthy with good root systems	. 6	6
2. few trees or small trees and shrubs; vegetation appears generally healthy		5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow	v 2	2
5. little or no bank vegetation, mass erosion and bank failure evident	0	0
5. Ittle of no bank vegetation, mass crosion and bank fatture evident.		Total 14
Remarks		i otai
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's sur	face Canon	w would block o
sunlight when the sun is directly overhead. Note shading from mountains, but not use to score the	is metric.	y would block o
suilinglit which the suit is directly overhead. Note standing from measurems, our not also to soore in	02 002/2020	Score
A. Stream with good canopy with some breaks for light penetration		10
B. Stream with full canopy - breaks for light penetration absent	******	8
B. Stream with thin canopy - breaks for light belief and a second light belief		7
C. Stream with partial canopy - sunlight and shading are essentially equal		2
D. Stream with minimal canopy - full sun in all but a few areas	54444444 T	
E. No canopy and no shading	*********	0
Remarks		Subtotal 10
VIII. Riparian Vegetative Zone Width	Lar Britari	
Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon	floodplain). Definition: A b
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly e	nter the stre	am, such as path
down to stream, storm drains, uprooted trees, otter slides, etc.		
FACE UPSTREAM	Lft. Bank	
Dominant vegetation: ☑ Trees ☑ Shrubs ☐ Grasses ☐ Weeds/old field ☐ Exotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no breaks)	-6	A
1. width > 18 meters	(3)	(4)
2. width 12-18 meters	4	4
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
	-	
B. Riparian zone not intact (breaks)		
1. breaks rare	4	A
a. width > 18 meters	2	3
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	į.
2. breaks common	1.5	
	3	3
a. width > 18 meters		
a. width > 18 metersb. width 12-18 meters	2	2
	2 I	2
b. width 12-18 meters	I	2 1 0 10
b. width 12-18 meters	I	2 1 0 Total 10
b. width 12-18 meters	0	
b. width 12-18 meters	0	otal 50

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Heman Dainy UT-2

Biological Assessment Unit, DWQ		TOTAL SCORE
		neters preferred of stream, preferably in an
upstream direction starting above the br	idge pool and the road right-of-way. The se	gment which is assessed should represent average
stream conditions. To perform a proper	habitat evaluation the observer needs to get	into the stream. To complete the form, select the
description which best fits the observed h	abitats and then circle the score. If the obs-	erved habitat falls in between two descriptions,
select an intermediate score. A final hab	itat score is determined by adding the result	s from the different metrics.
11- 11 D 1	Three forks	€ 1\
Stream UT Mad 1 LOCK Lock	ation/road: (narin Llad (Road Name_)County Alexander
()2) (//	20 6 1 1	02 00 27
Date 0-73-106 CC#0305	TO 10170138sin Catawha	Subbasin U3-U3-3-3
Observer(s) JEM Type of Study: I	☐ Fish ■Benthos ☐ Basinwide ☐ Spec	ial Study (Describe)
711 -61)MA	
Latitude 35.43/6 Longitude D1.	2069 Ecoregion: DMT DP DSla	ate Belt Triassic Basin
Water Quality: Temperature	DOmg/l Conductivity (corr.)	µS/cm pH
		can see from sampling location - include what
you estimate driving thru the watershe	ed in watershed land use.	
Annual Company	ALMOST ALL DESCRIPTION OF THE PARTY OF THE P	60 11 11 0
Visible Land Use:%Forest	%Residential %Activ	Pasture W Active Crops
%Fallow Fields% Comme	ercial %Industrial 35 %Other	re Pasture 60 % Active Crops
	The Colored Carlo III and the colored Carlo	
Watershed land use: LiPorest LiAgri	culture Urban	ream
sector () Second Char	nnel (at top of bank) [.5 Stream Dep	thi (m) Aug) May
width: (meters) Stream t Cha	Large river >25m wide	ill. (III) Avg Vg Iviax
Park Uninkt (from descriptions of siff)	to top of bank first flat surface you stand	m) (m) · l
Bank Height (from deepest part of Time	e to top of bank-first flat surface you stand o	5h). (m)
Pank Angle: Or FINA	(Vertical is 90° horizontal is 0° Angles >	90° indicate slope is towards mid-channel, < 90°
indicate clone is away from channel NA	if bank is too low for bank angle to matter.)
☐ Channelized Ditch	II bank is too low for bank angle to matter.	y .
Deenly incised steen straight hanks	Both banks undercut at bend Chann	el filled in with sediment
Recent overbank denosits	Bar development DBuriec	structures DExposed bedrock
Excessive periphyton growth	☐Bar development ☐Buried ☐ Heavy filamentous algae growth ☐Green	tinge
Manmade Stabilization: DN DY: DR	ip-rap, cement, gabions Sediment/grade	-control structure Berm/levee
Flow conditions : DHigh Normal		
	□Turbid □Tannic □Milky □Colored	(from dyes)
Good notential for Wetlands Rest	oration Project?? DYES DNO Detail	ils
Channel Flow Status	Access 14 14 1011 10 10 10 10 10 10 10 10 10 10 10 1	***
Useful especially under abnorm	al or low flow conditions.	
A Water reaches base of both I	ower banks, minimal channel substrate expo	osed
B. Water fills >75% of available	e channel, or <25% of channel substrate is	exposed
	ble channel, many logs/snags exposed	
	mostly present as standing pools	
Weather Conditions:	Photos: ON OY Digita	ıl □35mm
. A. N.		
Remarks: Com flow		

Remarks

☐ Pool bottom boulder-cobble=hard ☐ Bottom sandy-sink as you walk ☐ Silt bottom ☐ Some pools over wader depth

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Freque		Infrequent
Sci	-	re ·
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream	12	
B. riffle as wide as stream but riffle length is not 2X stream width	2	
C. riffle not as wide as stream and riffle length is not 2X stream width	3	
D. riffles absent.		ibtotal 16
Channel Slope: □Typical for area □Steep=fast flow □Low=like a coastal stream	30	ibiotal 10
VI. Bank Stability and Vegetation		
FACE UPSTREAM	Left Bank	Rt. Bank
and the state of t	Score	Score
A. Banks stable	•	\circ
1. little evidence of erosion or bank failure(except outside of bends), little potential for ero	sion (7)	(7)
B. Erosion areas present	20	2
 diverse trees, shrubs, grass; plants healthy with good root systems 		6
few trees or small trees and shrubs; vegetation appears generally healthy	5	5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flo		2
5. little or no bank vegetation, mass erosion and bank failure evident	0	- 14
Domestic .		Total 6
Remarks		
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's sunlight when the sun is directly overhead. Note shading from mountains, but not use to score	irface. Cano this metric.	py would block out Score
A. Stream with good canopy with some breaks for light penetration		(10)
B. Stream with full canopy - breaks for light penetration absent	*******	8
C. Stream with partial canopy - sunlight and shading are essentially equal		7
D. Stream with minimal canopy - full sun in all but a few areas		2
E. No canopy and no shading		0
L. No canopy and no shading	101111111111111111111111111111111111111	In
Remarks		Subtotal ()
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyo in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc.)	enter the str Lft. Ban	eam, such as paths k Rt. Bank
A. Riparian zone intact (no breaks)	(1)	d
1. width > 18 meters	(3)	Q
2. width 12-18 meters	74	4
3. width 6-12 meters	2	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare	(a)	(1)
a. width > 18 meters	4	9
b. width 12-18 meters c. width 6-12 meters	2	2
d. width < 6 meters.	ī	1
	3	
2. breaks common a. width > 18 meters	3	3
b. width 12-18 meters.	2	2
c. width 6-12 meters	1	1
d. width < 6 meters	0	0,0
Remarks		Total 18
		TO
	Page '	
☐ Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream. To	OTAL SCO	RE G
		.0

3/06 Revision 6

He-man Dairy UT-3

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Biological Assessment Unit, DWQ	TOTAL SCORE
	num of 100 meters with 200 meters preferred of stream, preferably in an
upstream direction starting above the bridge pool an	d the road right-of-way. The segment which is assessed should represent average
stream conditions. To perform a proper habitat evalu	ation the observer needs to get into the stream. To complete the form, select the
description which best fits the observed habitats and	then circle the score. If the observed habitat falls in between two descriptions,
select an intermediate score. A final habitat score is	determined by adding the results from the different metrics
UT A 11 C.	wee forks
Stream WI- ML J- Location/road:	(Nucy Adar) (Road Name) County / Lexaure
20 12 11	26 6
Date CC#050501011 2.40	Church Adad (Road Name)County Alexander Basin Cutawha Subbasin 03-08-22
	/
Observer(s) Type of Study: Fish Fish	enthos Basinwide Special Study (Describe)
Latitude 35.43/6 Longitude 71. 2069 E	coregion:
Water Quality: Temperature °C DO	mg/l Conductivity (corr.) µS/cm pH
7,410 (0.014)	
Physical Characterization: Visible land use refer	s to immediate area that you can see from sampling location - include what
you estimate driving thru the watershed in waters	
Marie Carrier and Carrier	A - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Visible Land Use: %Forest	%Residential 40 %Active Pasture 40 % Active Crops .
%Fallow Fields % Commercial	%Residential 40 %Active Pasture 40 % Active Crops %Industrial 20 %Other - Describe: Liparia & Ballow Negline
	- All Market Mar
Watershed land use : □Forest □Agriculture □Ur	ban Animal operations upstream
Width: (meters) Stream Channel (at top	of bank) Stream Depth: (m) Avg Max
☐ Width variable ☐ Large river	
Bank Height (from deepest part of riffle to top of b	
manufacture (Carros professor Province Carros of Carros S	
Bank Angle: ° or □ NA (Vertical is	90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90°
indicate slope is away from channel. NA if bank is to	
☐ Channelized Ditch	
	undercut at bend
☐ Recent overbank deposits ☐ Bar develo	pment
☐ Excessive periphyton growth ☐ Heavy fila	pment □Buried structures □Exposed bedrock mentous algae growth □Green tinge □ Sewage smell
Manmade Stabilization: □N □Y: □Rip-rap, ceme	ent, gabions Sediment/grade-control structure Berm/levee
Flow conditions : DHigh DNormal DLow	
Turbidity: □Clear □ Slightly Turbid □Turbid	□Tannic □Milky □Colored (from dyes)
Good potential for Wetlands Restoration Pro	
Channel Flow Status	
Useful especially under abnormal or low flo	w conditions.
	minimal channel substrate exposed
	<25% of channel substrate is exposed
	many logs/snags exposed
	nt as standing pools
W. W. C. Mar	Black DV DV DV DV DV
Weather Conditions:	Photos: □N □Y □ Digital □35mm
Remarks:	

NOT Sampled 2016

							ut	3
I. Channel Mo	diffeation						Score	
		requent bends			11111 W. 1111 1111 1111 1111 1111 1111	CONTRACTOR	5	
		nfrequent bends (channel					4	
		ion present					3	
		hannelization, >40% of st					2	
		tely channelized or rip ra					0	
		nce of desnagging=no lar						
Remarks	diedging LEvide	nce of desnagging-no far	ge woody	deoris in siream	Libanks of unito		ibtotal	
Kemarks						, Oc	iototai	
reach is rocks,	1 type is present, c	the percentage of the reac ircle the score of 17. Defi s in pool areas). Mark as	nition: lea	fpacks consist o	f older leaves that	r fish cover are packed	f. If >70% of the together and ha	e ive
Rocks	Macrophytes	Sticks and leafpack	csSn	ags and logs _	Undercut bank	ks or root	mats	
	AMOU	NT OF REACH FAVO	RABLE F	OR COLONIZ	ATION OR COV	ER		
	1.50000	2,0,000 0000000000000000000000000000000	>70%	40-70%	20-40%	<20%		
			Score	Score	Score	Score		
	4 or 5	types present	20	16	12	8		
		s present	19	15	11	7		
		s present	18	14	10	6		
		present		13	9	5		
				1.3	7	-		2
- War		es present	U				Subtotal	
LI No woody v	regetation in riparia	nn zone Remarks_				-	Subtotal	
A. su B. su C. su D. su Remarks	bstrate with good 1. embeddednes 2. embeddednes 3. embeddednes 4. embeddednes bstrate gravel and 1. embeddednes 2. embeddednes 3. embeddednes 4. embeddednes 4. embeddednes bstrate mostly gra 1. embeddednes bstrate homogene 1. substrate nes 2. substrate nes 3. substrate nes 4. substrate nes 4. substrate nes	ss <20%ss 20-40%ss 40-80%ss >80%ss >50%ss <50%ss >50%ss >50%ss	nd boulde usually on	rs	boulders)	St	Score 15 12 8 3 14 11 6 2 8 4 3 3 2 1 btotal	
associated with large high grad A. Pools 1. Pools 2. Pools B. Pools	h pools are always a dient streams, or sic s present ols Frequent (>30% a. variety of pools about to ols Infrequent (<30 a. variety of pools about to b. pools about to s absent	slow. Pools may take the	form of "p	in)	nall pools behind b	Sub	Score 10 8 6 4 0 total	
Remarks	and the second second						Page Total	_

4	-
	- 3
	/

Definition: Riffle is area of reaeration-can be debris dam, or narrov			Infrequent
V 10.1 C 1.1 CO 1.1 CO 1.1		Score Score	<u>e</u>
A. well defined riffle and run, riffle as wide as stream and ex		6 12	
B. riffle as wide as stream but riffle length is not 2X stream v		4 7	
C. riffle not as wide as stream and riffle length is not 2X stream		0 3	1.2
D. riffles absent)	
Channel Slope: ☐Typical for area ☐Steep=fast flow ☐Low=lik	e a coastal stream	Su	btotal
VI. Bank Stability and Vegetation			
FACE UPSTREAM		Left Bank	Rt. Bank
		Score	Score
Banks stable I. little evidence of erosion or bank failure(except outside)	of bends), little potential for e	rosion 7	7
B. Erosion areas present			
1. diverse trees, shrubs, grass; plants healthy with good	root systems	6	6
2. few trees or small trees and shrubs; vegetation appear			5
3. sparse mixed vegetation; plant types and conditions si			3
4. mostly grasses, few if any trees and shrubs, high erosion			2
5. little or no bank vegetation, mass erosion and bank fail			0
3. Here of no bank vegetation, mass crosion and bank tan	ate evidentialities of the second		Total
Remarks			i otai
VII. Light Penetration Canopy is defined as tree or vegetative co sunlight when the sun is directly overhead. Note shading from			by would block out
			Score
A. Stream with good canopy with some breaks for light pe	enetration		10
B. Stream with full canopy - breaks for light penetration	absent		8
C. Stream with partial canopy - sunlight and shading are	accentrally agual	************	7
D. Stream with minimal canopy - full sun in all but a few			2
E. No canopy and no shading	***************************************		0
Remarks			Subtotal
VIII. Riparian Vegetative Zone Width			
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows			
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows			am, such as paths
Definition: Riparian zone for this form is area of natural vegetation the riparian zone is any place on the stream banks which allows own to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM	sediment or pollutants to direct	ly enter the stre Lft. Bank	am, such as paths
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows own to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds	sediment or pollutants to direct	ly enter the stre Lft. Bank	am, such as paths Rt. Bank
Definition: Riparian zone for this form is area of natural vegetation the riparian zone is any place on the stream banks which allows lown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks)	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4
Definition: Riparian zone for this form is area of natural vegetation the riparian zone is any place on the stream banks which allows down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters.	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4 3
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4
Definition: Riparian zone for this form is area of natural vegetation the riparian zone is any place on the stream banks which allows lown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks)	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4 3
Definition: Riparian zone for this form is area of natural vegetation the riparian zone is any place on the stream banks which allows own to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters.	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4 3
Definition: Riparian zone for this form is area of natural vegetation the riparian zone is any place on the stream banks which allows own to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters.	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4 3
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows from to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters.	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4 3
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows own to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters.	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4 3
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows own to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4 3
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows own to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters.	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4 3
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows own to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. b. width > 18 meters. c. width > 18 meters. d. width < 6 meters. b. width < 12-18 meters. c. width < 12-18 meters. d. width > 18 meters. b. width > 18 meters.	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4 3
Definition: Riparian zone for this form is area of natural vegetation the riparian zone is any place on the stream banks which allows lown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters.	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4 3
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows flown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. b. width > 18 meters. c. width < 6 meters. d. width < 6 meters. D. breaks common a. width > 18 meters. b. width > 18 meters. c. width > 18 meters. d. width > 18 meters.	sediment or pollutants to direct	Lft. Bank tc) Score	am, such as paths Rt. Bank Score 5 4 3
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. c. width > 18 meters. c. width > 18 meters. d. width < 6 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. c. width 6-12 meters. d. width < 6 meters. d. width < 6 meters.	sediment or pollutants to direct	Lft. Bank tc) Score 5 4 3 2 1 3 2 1 0	Rt. Bank Score 5 4 3 2 1 3 2 1 0
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. 2. breaks common a. width > 18 meters. 2. breaks common a. width > 18 meters. c. width > 12-18 meters. c. width - 12 meters. c. width 6-12 meters. c. width 6-12 meters.	sediment or pollutants to direct	Lft. Bank tc) Score 5 4 3 2 1 3 2 1 0	Rt. Bank Score 5 4 3 2 1 3 2 1 Total
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. c. width > 18 meters. d. width > 18 meters. d. width < 6 meters. A width < 6 meters. C. width 6-12 meters. d. width < 6 meters. d. width < 6 meters. Remarks	sediment or pollutants to direct	Lft. Bank tc) Score 5 4 3 2 1 3 2 1 0 Page T	Rt. Bank Score 5 4 3 2 1 3 2 1 OTotal
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. c. width > 18 meters. c. width > 18 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. c. width 6-12 meters. d. width < 6-12 meters. d. width < 6-12 meters. c. width 6-12 meters. d. width < 6 meters.	sediment or pollutants to direct	Lft. Bank tc) Score 5 4 3 2 1 3 2 1 0	Rt. Bank Score 5 4 3 2 4 3 2 1 OTotal
Definition: Riparian zone for this form is area of natural vegetation in the riparian zone is any place on the stream banks which allows down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. c. width > 18 meters. d. width > 18 meters. d. width < 6 meters. A width < 6 meters. C. width 6-12 meters. d. width > 18 meters. d. width > 18 meters. d. width > 18 meters. d. width < 6 meters. C. width 6-12 meters. d. width < 6 meters. C. width 6-12 meters. d. width < 6 meters.	sediment or pollutants to direct	Lft. Bank tc) Score 5 4 3 2 1 3 2 1 0 Page T	Rt. Bank Score 5 4 3 2 1 3 2 1 OTotal